Normalized defining polynomial
\( x^{20} - 6 x^{19} + 4 x^{18} + 72 x^{17} - 332 x^{16} + 592 x^{15} + 664 x^{14} - 6779 x^{13} + 17531 x^{12} - 14690 x^{11} - 38498 x^{10} + 145502 x^{9} - 211414 x^{8} + 80164 x^{7} + 286423 x^{6} - 669021 x^{5} + 759600 x^{4} - 511875 x^{3} + 191745 x^{2} - 29025 x - 675 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(354164737431994968652745361328125=3^{10}\cdot 5^{13}\cdot 23^{8}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{15} a^{16} - \frac{1}{3} a^{14} - \frac{1}{5} a^{13} - \frac{1}{3} a^{12} + \frac{4}{15} a^{11} - \frac{2}{15} a^{10} - \frac{2}{15} a^{9} + \frac{2}{15} a^{8} - \frac{1}{3} a^{7} + \frac{4}{15} a^{6} - \frac{4}{15} a^{5} - \frac{4}{15} a^{4} + \frac{1}{15} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{15} a^{17} - \frac{1}{3} a^{15} - \frac{1}{5} a^{14} - \frac{1}{3} a^{13} + \frac{4}{15} a^{12} - \frac{2}{15} a^{11} - \frac{2}{15} a^{10} + \frac{2}{15} a^{9} - \frac{1}{3} a^{8} + \frac{4}{15} a^{7} - \frac{4}{15} a^{6} - \frac{4}{15} a^{5} + \frac{1}{15} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{45} a^{18} + \frac{1}{45} a^{16} - \frac{1}{15} a^{15} - \frac{4}{9} a^{14} - \frac{14}{45} a^{13} - \frac{17}{45} a^{12} - \frac{8}{45} a^{11} + \frac{4}{9} a^{10} - \frac{2}{45} a^{9} - \frac{14}{45} a^{8} + \frac{11}{45} a^{7} + \frac{1}{9} a^{6} + \frac{7}{45} a^{5} + \frac{16}{45} a^{4} + \frac{2}{15} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{71468312517836123271492221695186650940545} a^{19} - \frac{649305688378385876790506929035094636459}{71468312517836123271492221695186650940545} a^{18} - \frac{2376890380950085527058346878903436338706}{71468312517836123271492221695186650940545} a^{17} - \frac{443428145466425486818836182194860632798}{14293662503567224654298444339037330188109} a^{16} + \frac{4383532479134256243058314540746073208522}{71468312517836123271492221695186650940545} a^{15} - \frac{11028533280930295856173017628591910087716}{23822770839278707757164073898395550313515} a^{14} + \frac{945091013277502094804081147149753862982}{7940923613092902585721357966131850104505} a^{13} - \frac{1400848851269677644830300609628408627182}{7940923613092902585721357966131850104505} a^{12} - \frac{9830587268918568990562440817389379490771}{71468312517836123271492221695186650940545} a^{11} + \frac{21941079733311507546664799987298223246673}{71468312517836123271492221695186650940545} a^{10} + \frac{1901261592884782706068272967664797750322}{23822770839278707757164073898395550313515} a^{9} + \frac{28198388754938661700800508452215771324}{803014747391417115410024962867265740905} a^{8} + \frac{4714759899405787400942550745095980733821}{23822770839278707757164073898395550313515} a^{7} - \frac{18886955797006314396006458118581916555532}{71468312517836123271492221695186650940545} a^{6} + \frac{3996811823292337439886319987340194877036}{23822770839278707757164073898395550313515} a^{5} - \frac{30799630820972285218267433837328373451968}{71468312517836123271492221695186650940545} a^{4} + \frac{8457367501327543427507435146508059635701}{23822770839278707757164073898395550313515} a^{3} - \frac{627860764367279592866065132597329908218}{1588184722618580517144271593226370020901} a^{2} + \frac{756409730317381731576929711266081753586}{1588184722618580517144271593226370020901} a - \frac{226576862200957873877351186735924998429}{1588184722618580517144271593226370020901}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1522016881.13 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n804 are not computed |
| Character table for t20n804 is not computed |
Intermediate fields
| 5.5.767625.1, 10.6.311712266390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| $23$ | 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 89 | Data not computed | ||||||