Normalized defining polynomial
\( x^{20} - 8 x^{19} + 36 x^{18} - 99 x^{17} + 178 x^{16} - 52 x^{15} - 789 x^{14} + 1554 x^{13} + 1331 x^{12} - 10275 x^{11} + 18084 x^{10} - 13855 x^{9} + 4749 x^{8} - 6003 x^{7} + 9274 x^{6} - 2853 x^{5} - 2318 x^{4} + 1020 x^{3} + 153 x^{2} - 53 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3532482967262878713879394531250000=2^{4}\cdot 5^{17}\cdot 11^{4}\cdot 71^{4}\cdot 167^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 71, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{9} + \frac{2}{5} a^{7} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{25} a^{15} + \frac{2}{25} a^{14} + \frac{1}{25} a^{13} + \frac{1}{25} a^{12} - \frac{7}{25} a^{11} + \frac{6}{25} a^{10} - \frac{8}{25} a^{9} - \frac{8}{25} a^{8} + \frac{9}{25} a^{7} - \frac{1}{25} a^{6} + \frac{2}{25} a^{5} + \frac{11}{25} a^{4} + \frac{2}{5} a^{3} - \frac{1}{25} a^{2} - \frac{4}{25} a - \frac{2}{25}$, $\frac{1}{25} a^{16} + \frac{2}{25} a^{14} - \frac{1}{25} a^{13} - \frac{4}{25} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{12}{25} a^{9} - \frac{9}{25} a^{7} + \frac{4}{25} a^{6} + \frac{2}{25} a^{5} + \frac{8}{25} a^{4} - \frac{6}{25} a^{3} - \frac{7}{25} a^{2} + \frac{11}{25} a - \frac{1}{25}$, $\frac{1}{125} a^{17} + \frac{1}{125} a^{16} - \frac{2}{125} a^{15} - \frac{2}{125} a^{14} - \frac{9}{125} a^{13} - \frac{13}{125} a^{12} + \frac{43}{125} a^{11} - \frac{6}{125} a^{10} - \frac{2}{5} a^{9} - \frac{52}{125} a^{8} - \frac{31}{125} a^{7} + \frac{2}{25} a^{6} - \frac{53}{125} a^{5} + \frac{3}{125} a^{4} - \frac{13}{125} a^{3} + \frac{28}{125} a^{2} - \frac{19}{125} a - \frac{23}{125}$, $\frac{1}{250} a^{18} - \frac{3}{250} a^{16} - \frac{1}{50} a^{15} - \frac{17}{250} a^{14} - \frac{9}{250} a^{13} - \frac{37}{125} a^{12} + \frac{111}{250} a^{11} + \frac{51}{250} a^{10} + \frac{19}{125} a^{9} + \frac{61}{250} a^{8} + \frac{121}{250} a^{7} - \frac{29}{125} a^{6} + \frac{23}{125} a^{5} + \frac{27}{125} a^{4} - \frac{9}{250} a^{3} - \frac{21}{125} a^{2} - \frac{109}{250} a + \frac{33}{250}$, $\frac{1}{210069539830543313471908750} a^{19} - \frac{27468822268055770268221}{42013907966108662694381750} a^{18} + \frac{333433300120618017036371}{210069539830543313471908750} a^{17} - \frac{15288350355199186440418}{105034769915271656735954375} a^{16} - \frac{35033969426978066335593}{21006953983054331347190875} a^{15} + \frac{7124314209782508532121979}{105034769915271656735954375} a^{14} - \frac{268114648008791260089433}{42013907966108662694381750} a^{13} + \frac{84703792774956824707532509}{210069539830543313471908750} a^{12} - \frac{446630415694114233491796}{105034769915271656735954375} a^{11} + \frac{3064232331050617954508449}{210069539830543313471908750} a^{10} - \frac{91663793629903632077905769}{210069539830543313471908750} a^{9} + \frac{49087747811101328173780269}{105034769915271656735954375} a^{8} + \frac{48125978858730500057585313}{210069539830543313471908750} a^{7} - \frac{13658435194165180945702132}{105034769915271656735954375} a^{6} - \frac{33982772543379731887319184}{105034769915271656735954375} a^{5} + \frac{25310738729097136037089843}{210069539830543313471908750} a^{4} - \frac{11118664936977202113167689}{210069539830543313471908750} a^{3} + \frac{29302802236268771490901253}{210069539830543313471908750} a^{2} + \frac{22280032218007723547399756}{105034769915271656735954375} a + \frac{59703857631080623805815233}{210069539830543313471908750}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2747450732.72 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1857945600 |
| The 260 conjugacy class representatives for t20n1106 are not computed |
| Character table for t20n1106 is not computed |
Intermediate fields
| 10.10.6645000909765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | $18{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.10.17.7 | $x^{10} - 15 x^{8} + 5$ | $10$ | $1$ | $17$ | $F_{5}\times C_2$ | $[2]_{2}^{4}$ | |
| $11$ | 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $71$ | 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.8.0.1 | $x^{8} - 7 x + 13$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $167$ | 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 167.4.2.2 | $x^{4} - 167 x^{2} + 139445$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 167.4.2.2 | $x^{4} - 167 x^{2} + 139445$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 167.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |