Normalized defining polynomial
\( x^{20} - 8 x^{19} + 31 x^{18} - 82 x^{17} + 134 x^{16} - 695 x^{14} + 2366 x^{13} - 5424 x^{12} + 9633 x^{11} - 11634 x^{10} + 4644 x^{9} + 13534 x^{8} - 32178 x^{7} + 34116 x^{6} - 14802 x^{5} - 8029 x^{4} + 15156 x^{3} - 9360 x^{2} + 3077 x - 479 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(342322103763146027982431640625=5^{10}\cdot 19^{5}\cdot 1699^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 1699$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{29} a^{18} + \frac{9}{29} a^{17} - \frac{1}{29} a^{16} + \frac{5}{29} a^{15} - \frac{2}{29} a^{14} - \frac{2}{29} a^{13} - \frac{11}{29} a^{12} - \frac{3}{29} a^{11} + \frac{11}{29} a^{10} - \frac{7}{29} a^{9} - \frac{13}{29} a^{8} + \frac{5}{29} a^{7} - \frac{13}{29} a^{6} - \frac{3}{29} a^{5} - \frac{12}{29} a^{4} - \frac{9}{29} a^{3} + \frac{12}{29} a^{2} + \frac{2}{29} a - \frac{4}{29}$, $\frac{1}{4160102054284499210889685103195873} a^{19} - \frac{10179152175251780815972845894698}{4160102054284499210889685103195873} a^{18} - \frac{1090178062202055371223468047404540}{4160102054284499210889685103195873} a^{17} - \frac{1022986838598517277225626787388791}{4160102054284499210889685103195873} a^{16} - \frac{973524817404437144216066174452406}{4160102054284499210889685103195873} a^{15} - \frac{923659202190988505196149554145025}{4160102054284499210889685103195873} a^{14} - \frac{1405255340321831883275213240018782}{4160102054284499210889685103195873} a^{13} + \frac{663510629787132631790246922438523}{4160102054284499210889685103195873} a^{12} - \frac{538545139003117415972924368476543}{4160102054284499210889685103195873} a^{11} - \frac{483272959312374360749139702870910}{4160102054284499210889685103195873} a^{10} + \frac{250309790816439306204662949419549}{4160102054284499210889685103195873} a^{9} - \frac{1072127189225950067182341627223158}{4160102054284499210889685103195873} a^{8} - \frac{2035980516582578886619298285795784}{4160102054284499210889685103195873} a^{7} + \frac{1410998097687940424572118606491567}{4160102054284499210889685103195873} a^{6} + \frac{35551623539368861402682474691071}{4160102054284499210889685103195873} a^{5} + \frac{159377848174234346413021479200983}{4160102054284499210889685103195873} a^{4} + \frac{890581517408172372092514273497478}{4160102054284499210889685103195873} a^{3} + \frac{1385727098045236437363954155238691}{4160102054284499210889685103195873} a^{2} + \frac{511484124321723238299361049355981}{4160102054284499210889685103195873} a - \frac{1806952151773650224384085771177056}{4160102054284499210889685103195873}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14678297.381 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n756 are not computed |
| Character table for t20n756 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.3256446753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1699 | Data not computed | ||||||