Properties

Label 20.8.34232210376...0625.2
Degree $20$
Signature $[8, 6]$
Discriminant $5^{10}\cdot 19^{5}\cdot 1699^{5}$
Root discriminant $29.97$
Ramified primes $5, 19, 1699$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T756

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-479, 3077, -9360, 15156, -8029, -14802, 34116, -32178, 13534, 4644, -11634, 9633, -5424, 2366, -695, 0, 134, -82, 31, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 8*x^19 + 31*x^18 - 82*x^17 + 134*x^16 - 695*x^14 + 2366*x^13 - 5424*x^12 + 9633*x^11 - 11634*x^10 + 4644*x^9 + 13534*x^8 - 32178*x^7 + 34116*x^6 - 14802*x^5 - 8029*x^4 + 15156*x^3 - 9360*x^2 + 3077*x - 479)
 
gp: K = bnfinit(x^20 - 8*x^19 + 31*x^18 - 82*x^17 + 134*x^16 - 695*x^14 + 2366*x^13 - 5424*x^12 + 9633*x^11 - 11634*x^10 + 4644*x^9 + 13534*x^8 - 32178*x^7 + 34116*x^6 - 14802*x^5 - 8029*x^4 + 15156*x^3 - 9360*x^2 + 3077*x - 479, 1)
 

Normalized defining polynomial

\( x^{20} - 8 x^{19} + 31 x^{18} - 82 x^{17} + 134 x^{16} - 695 x^{14} + 2366 x^{13} - 5424 x^{12} + 9633 x^{11} - 11634 x^{10} + 4644 x^{9} + 13534 x^{8} - 32178 x^{7} + 34116 x^{6} - 14802 x^{5} - 8029 x^{4} + 15156 x^{3} - 9360 x^{2} + 3077 x - 479 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(342322103763146027982431640625=5^{10}\cdot 19^{5}\cdot 1699^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.97$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19, 1699$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{29} a^{18} + \frac{9}{29} a^{17} - \frac{1}{29} a^{16} + \frac{5}{29} a^{15} - \frac{2}{29} a^{14} - \frac{2}{29} a^{13} - \frac{11}{29} a^{12} - \frac{3}{29} a^{11} + \frac{11}{29} a^{10} - \frac{7}{29} a^{9} - \frac{13}{29} a^{8} + \frac{5}{29} a^{7} - \frac{13}{29} a^{6} - \frac{3}{29} a^{5} - \frac{12}{29} a^{4} - \frac{9}{29} a^{3} + \frac{12}{29} a^{2} + \frac{2}{29} a - \frac{4}{29}$, $\frac{1}{4160102054284499210889685103195873} a^{19} - \frac{10179152175251780815972845894698}{4160102054284499210889685103195873} a^{18} - \frac{1090178062202055371223468047404540}{4160102054284499210889685103195873} a^{17} - \frac{1022986838598517277225626787388791}{4160102054284499210889685103195873} a^{16} - \frac{973524817404437144216066174452406}{4160102054284499210889685103195873} a^{15} - \frac{923659202190988505196149554145025}{4160102054284499210889685103195873} a^{14} - \frac{1405255340321831883275213240018782}{4160102054284499210889685103195873} a^{13} + \frac{663510629787132631790246922438523}{4160102054284499210889685103195873} a^{12} - \frac{538545139003117415972924368476543}{4160102054284499210889685103195873} a^{11} - \frac{483272959312374360749139702870910}{4160102054284499210889685103195873} a^{10} + \frac{250309790816439306204662949419549}{4160102054284499210889685103195873} a^{9} - \frac{1072127189225950067182341627223158}{4160102054284499210889685103195873} a^{8} - \frac{2035980516582578886619298285795784}{4160102054284499210889685103195873} a^{7} + \frac{1410998097687940424572118606491567}{4160102054284499210889685103195873} a^{6} + \frac{35551623539368861402682474691071}{4160102054284499210889685103195873} a^{5} + \frac{159377848174234346413021479200983}{4160102054284499210889685103195873} a^{4} + \frac{890581517408172372092514273497478}{4160102054284499210889685103195873} a^{3} + \frac{1385727098045236437363954155238691}{4160102054284499210889685103195873} a^{2} + \frac{511484124321723238299361049355981}{4160102054284499210889685103195873} a - \frac{1806952151773650224384085771177056}{4160102054284499210889685103195873}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 14678297.381 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T756:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 102400
The 130 conjugacy class representatives for t20n756 are not computed
Character table for t20n756 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.3256446753125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
19.4.3.2$x^{4} - 19$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
1699Data not computed