Normalized defining polynomial
\( x^{20} + 66 x^{18} + 1199 x^{16} + 396 x^{14} - 140151 x^{12} - 702064 x^{10} + 2648932 x^{8} + 16052102 x^{6} - 11841665 x^{4} - 79682614 x^{2} + 19911881 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34136437243167592795589550820145909202944=2^{40}\cdot 11^{18}\cdot 89^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{11} a^{11}$, $\frac{1}{11} a^{12}$, $\frac{1}{11} a^{13}$, $\frac{1}{11} a^{14}$, $\frac{1}{11} a^{15}$, $\frac{1}{121} a^{16} + \frac{4}{11} a^{8} - \frac{1}{11} a^{6}$, $\frac{1}{121} a^{17} + \frac{4}{11} a^{9} - \frac{1}{11} a^{7}$, $\frac{1}{329123807066965037417487029322083} a^{18} + \frac{15678150168160280544260064249}{329123807066965037417487029322083} a^{16} + \frac{8343003657906348376853472348}{29920346096996821583407911756553} a^{14} + \frac{566565172183953054592434291310}{29920346096996821583407911756553} a^{12} - \frac{99794710249363090037016729136}{29920346096996821583407911756553} a^{10} + \frac{751236886977485241031152180619}{29920346096996821583407911756553} a^{8} - \frac{11357372680990315630017620978899}{29920346096996821583407911756553} a^{6} - \frac{38492113710022855036807096497}{118262237537536844203193327101} a^{4} + \frac{3712800444739868724889833408}{118262237537536844203193327101} a^{2} - \frac{129643278016156841911096296225}{2720031463363347416673446523323}$, $\frac{1}{14152323703879496608951942260849569} a^{19} + \frac{15678150168160280544260064249}{14152323703879496608951942260849569} a^{17} + \frac{35368752027381422765131658275547}{1286574882170863328086540205531779} a^{15} - \frac{21193686534722826278795137895274}{1286574882170863328086540205531779} a^{13} + \frac{18940425533294068826677108934125}{1286574882170863328086540205531779} a^{11} - \frac{298452224082990730593047965384911}{1286574882170863328086540205531779} a^{9} - \frac{549923602426933104131360032596853}{1286574882170863328086540205531779} a^{7} + \frac{1262392499202882431198319501614}{5085276214114084300737313065343} a^{5} - \frac{2006745237693386482729396727309}{5085276214114084300737313065343} a^{3} - \frac{40930115228466368092012794146070}{116961352924623938916958200502889} a$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 859423529927 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n310 |
| Character table for t20n310 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.1738687177114624.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 89 | Data not computed | ||||||