Properties

Label 20.8.34136437243...2944.1
Degree $20$
Signature $[8, 6]$
Discriminant $2^{40}\cdot 11^{18}\cdot 89^{5}$
Root discriminant $106.33$
Ramified primes $2, 11, 89$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group 20T310

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![48342041, 0, 63428926, 0, 14551823, 0, -6499636, 0, -1965403, 0, 164780, 0, 66660, 0, 110, 0, -693, 0, -22, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 22*x^18 - 693*x^16 + 110*x^14 + 66660*x^12 + 164780*x^10 - 1965403*x^8 - 6499636*x^6 + 14551823*x^4 + 63428926*x^2 + 48342041)
 
gp: K = bnfinit(x^20 - 22*x^18 - 693*x^16 + 110*x^14 + 66660*x^12 + 164780*x^10 - 1965403*x^8 - 6499636*x^6 + 14551823*x^4 + 63428926*x^2 + 48342041, 1)
 

Normalized defining polynomial

\( x^{20} - 22 x^{18} - 693 x^{16} + 110 x^{14} + 66660 x^{12} + 164780 x^{10} - 1965403 x^{8} - 6499636 x^{6} + 14551823 x^{4} + 63428926 x^{2} + 48342041 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(34136437243167592795589550820145909202944=2^{40}\cdot 11^{18}\cdot 89^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $106.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{11} a^{11}$, $\frac{1}{11} a^{12}$, $\frac{1}{11} a^{13}$, $\frac{1}{11} a^{14}$, $\frac{1}{11} a^{15}$, $\frac{1}{11} a^{16}$, $\frac{1}{11} a^{17}$, $\frac{1}{1128413170161771387283702146791} a^{18} - \frac{220450120854979438150114122}{9325728679022904027138034271} a^{16} + \frac{1973030832235259272300025765}{102583015469251944298518376981} a^{14} - \frac{4121120957655972337710315933}{102583015469251944298518376981} a^{12} - \frac{2086473375399141614524722340}{102583015469251944298518376981} a^{10} + \frac{37554825754318738945208089289}{102583015469251944298518376981} a^{8} - \frac{1266927213545308941352482950}{9325728679022904027138034271} a^{6} - \frac{4184503278028190011769691596}{9325728679022904027138034271} a^{4} + \frac{4174986795561432242004051388}{9325728679022904027138034271} a^{2} - \frac{2414121650713102150567583482}{9325728679022904027138034271}$, $\frac{1}{75603682400838682948008043834997} a^{19} - \frac{170288067551817046308135872220}{6873062036439880268000731257727} a^{17} + \frac{197813333091716243842198745456}{6873062036439880268000731257727} a^{15} + \frac{107787623190618875987946095319}{6873062036439880268000731257727} a^{13} - \frac{30063659412467853695938825153}{6873062036439880268000731257727} a^{11} + \frac{242720856692822627542244843251}{6873062036439880268000731257727} a^{9} + \frac{8058801465477595085785551321}{624823821494534569818248296157} a^{7} + \frac{284913085771681834829509370805}{624823821494534569818248296157} a^{5} - \frac{182339586784896648300756634032}{624823821494534569818248296157} a^{3} - \frac{58368493724850526313395789108}{624823821494534569818248296157} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1366231723070 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T310:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 44 conjugacy class representatives for t20n310
Character table for t20n310 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.10.1738687177114624.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
89Data not computed