Normalized defining polynomial
\( x^{20} - 8 x^{19} + 22 x^{18} - 104 x^{16} + 40 x^{15} + 657 x^{14} - 1318 x^{13} + 175 x^{12} + 1196 x^{11} + 1860 x^{10} - 6248 x^{9} + 3080 x^{8} + 4438 x^{7} - 5650 x^{6} + 1534 x^{5} + 730 x^{4} - 576 x^{3} + 175 x^{2} - 26 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33966664043402470640067805184=2^{20}\cdot 11^{16}\cdot 89^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{4}{11} a^{14} + \frac{4}{11} a^{13} - \frac{3}{11} a^{12} - \frac{3}{11} a^{11} - \frac{4}{11} a^{10} - \frac{5}{11} a^{9} + \frac{3}{11} a^{8} - \frac{1}{11} a^{7} + \frac{1}{11} a^{6} + \frac{4}{11} a^{4} + \frac{1}{11} a^{3} + \frac{2}{11} a^{2} + \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{16} - \frac{1}{11} a^{14} + \frac{2}{11} a^{13} - \frac{4}{11} a^{12} - \frac{5}{11} a^{11} + \frac{1}{11} a^{10} + \frac{5}{11} a^{9} - \frac{3}{11} a^{7} + \frac{4}{11} a^{6} + \frac{4}{11} a^{5} - \frac{5}{11} a^{4} - \frac{5}{11} a^{3} - \frac{1}{11} a^{2} - \frac{2}{11} a + \frac{4}{11}$, $\frac{1}{11} a^{17} - \frac{2}{11} a^{14} + \frac{3}{11} a^{12} - \frac{2}{11} a^{11} + \frac{1}{11} a^{10} - \frac{5}{11} a^{9} + \frac{3}{11} a^{7} + \frac{5}{11} a^{6} - \frac{5}{11} a^{5} - \frac{1}{11} a^{4} - \frac{5}{11} a + \frac{1}{11}$, $\frac{1}{121} a^{18} - \frac{2}{121} a^{17} + \frac{1}{121} a^{16} + \frac{2}{121} a^{15} + \frac{53}{121} a^{14} - \frac{1}{121} a^{13} - \frac{24}{121} a^{12} + \frac{32}{121} a^{11} - \frac{4}{11} a^{10} - \frac{27}{121} a^{9} - \frac{40}{121} a^{8} - \frac{30}{121} a^{7} + \frac{59}{121} a^{6} + \frac{35}{121} a^{5} + \frac{2}{121} a^{4} + \frac{21}{121} a^{3} + \frac{57}{121} a^{2} + \frac{39}{121} a + \frac{28}{121}$, $\frac{1}{12816069693765020198879} a^{19} - \frac{39987462636446985932}{12816069693765020198879} a^{18} - \frac{162115964998446264551}{12816069693765020198879} a^{17} + \frac{41635718839132197391}{12816069693765020198879} a^{16} + \frac{520118566532557641877}{12816069693765020198879} a^{15} - \frac{231532868104099829824}{1165097244887729108989} a^{14} - \frac{1714281372457345419647}{12816069693765020198879} a^{13} - \frac{198974990302039373925}{1165097244887729108989} a^{12} + \frac{5842651362626038504528}{12816069693765020198879} a^{11} + \frac{5435061516300640801781}{12816069693765020198879} a^{10} - \frac{3704648215329570865234}{12816069693765020198879} a^{9} - \frac{2655717473178996228892}{12816069693765020198879} a^{8} + \frac{2053687963973497354225}{12816069693765020198879} a^{7} - \frac{121479984999173781869}{1165097244887729108989} a^{6} - \frac{4349680778990626220745}{12816069693765020198879} a^{5} + \frac{473246222211363296914}{12816069693765020198879} a^{4} + \frac{580291435777427157396}{12816069693765020198879} a^{3} + \frac{4195224231979581267472}{12816069693765020198879} a^{2} + \frac{878191826536607697062}{12816069693765020198879} a + \frac{152002413884806355890}{12816069693765020198879}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6156349.28908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.19535810978816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 89 | Data not computed | ||||||