Normalized defining polynomial
\( x^{20} - 3 x^{19} - 24 x^{18} + 129 x^{17} - 88 x^{16} - 1270 x^{15} + 4848 x^{14} - 1769 x^{13} - 21558 x^{12} + 42266 x^{11} - 27403 x^{10} - 22839 x^{9} + 40386 x^{8} - 285943 x^{7} + 893823 x^{6} + 1123264 x^{5} - 704049 x^{4} - 6317628 x^{3} - 6291263 x^{2} + 10656088 x + 11791993 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3281763883433900353692902429195567104=2^{16}\cdot 33769^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{13791932538267524913421704708877583635757430933439065761675710619} a^{19} + \frac{6859295010632532993797232020161884399226989626635447919866707085}{13791932538267524913421704708877583635757430933439065761675710619} a^{18} + \frac{4420730956470648562425246617977797755986399664943929880108925127}{13791932538267524913421704708877583635757430933439065761675710619} a^{17} + \frac{628449145535942954358821803397003687306272268110108515446269599}{13791932538267524913421704708877583635757430933439065761675710619} a^{16} - \frac{413361605588306419426094419323240354590803425588421018076397386}{13791932538267524913421704708877583635757430933439065761675710619} a^{15} - \frac{3232887514642546552848598927436890179323675149602749892028421647}{13791932538267524913421704708877583635757430933439065761675710619} a^{14} - \frac{4704153369756697372769675056946935646780306908405180829408170500}{13791932538267524913421704708877583635757430933439065761675710619} a^{13} - \frac{1566916512022824290477774272279614264501323263924252045434264829}{13791932538267524913421704708877583635757430933439065761675710619} a^{12} + \frac{3289740851360703723423112927433927044756282165342273987332297165}{13791932538267524913421704708877583635757430933439065761675710619} a^{11} + \frac{5570980860014635058587071284920216611731874649725723683120898046}{13791932538267524913421704708877583635757430933439065761675710619} a^{10} + \frac{4079950225383005126495395223045715587126030287941855118258760289}{13791932538267524913421704708877583635757430933439065761675710619} a^{9} + \frac{3123466063505293667459574346124869803887790256446738862311279164}{13791932538267524913421704708877583635757430933439065761675710619} a^{8} - \frac{6825581849384204297626616607483714629238723434974727855362981410}{13791932538267524913421704708877583635757430933439065761675710619} a^{7} + \frac{1672384822435567780570370020734108849168387393245976549133566709}{13791932538267524913421704708877583635757430933439065761675710619} a^{6} + \frac{4968442551588773354514611975547882372633209757526348972040827574}{13791932538267524913421704708877583635757430933439065761675710619} a^{5} - \frac{3903973838217034182009594726664699037158614881631720286315494045}{13791932538267524913421704708877583635757430933439065761675710619} a^{4} - \frac{6365126495248036509030323174992470582585638341416038695658161102}{13791932538267524913421704708877583635757430933439065761675710619} a^{3} + \frac{6032021805116367742660113137581268971088297788505341522198802725}{13791932538267524913421704708877583635757430933439065761675710619} a^{2} - \frac{5924330393918211057669879020102576211112808425895543212834214314}{13791932538267524913421704708877583635757430933439065761675710619} a + \frac{5781861213155288026384157203910419344730401699776052659884849765}{13791932538267524913421704708877583635757430933439065761675710619}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54180843242.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.135076.1, 10.10.616133159929744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.16.19 | $x^{12} + x^{10} - 2 x^{8} - 3 x^{6} + 2 x^{4} - 3 x^{2} + 1$ | $6$ | $2$ | $16$ | $C_2\times S_4$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
| 33769 | Data not computed | ||||||