Normalized defining polynomial
\( x^{20} - x^{19} - 25 x^{18} - 19 x^{17} + 105 x^{16} + 695 x^{15} + 1144 x^{14} - 1048 x^{13} - 20445 x^{12} + 50238 x^{11} - 144458 x^{10} + 438711 x^{9} - 1052756 x^{8} + 1473553 x^{7} - 2143907 x^{6} + 3488487 x^{5} - 3408590 x^{4} + 1298090 x^{3} + 448726 x^{2} - 312951 x + 14211 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3280906026328914297094848663330078125=5^{15}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{57} a^{18} - \frac{1}{57} a^{17} + \frac{16}{57} a^{16} - \frac{1}{19} a^{15} + \frac{20}{57} a^{14} + \frac{2}{57} a^{13} + \frac{26}{57} a^{12} + \frac{1}{19} a^{11} + \frac{1}{57} a^{10} - \frac{9}{19} a^{9} + \frac{7}{19} a^{8} + \frac{5}{19} a^{7} - \frac{17}{57} a^{6} - \frac{23}{57} a^{5} + \frac{7}{19} a^{4} - \frac{1}{57} a^{3} + \frac{16}{57} a^{2} - \frac{4}{19} a - \frac{2}{19}$, $\frac{1}{759099987149377425283108441763173548593992409589189300079164170349} a^{19} + \frac{383735082300109751846313634645380721946546684316737839957905289}{44652940420551613251947555397833738152587788799364076475244951197} a^{18} - \frac{83542100677074852350972121715327040121975732990650048532833698555}{759099987149377425283108441763173548593992409589189300079164170349} a^{17} + \frac{55587078909970040632640610252166448491926999489244907983914403547}{759099987149377425283108441763173548593992409589189300079164170349} a^{16} - \frac{117538901280799035403449800909746109208436159176220821492469615771}{253033329049792475094369480587724516197997469863063100026388056783} a^{15} + \frac{108742685726626057195849913192266071936823428185690098234680746291}{759099987149377425283108441763173548593992409589189300079164170349} a^{14} - \frac{289805802193075566480487650794068574530669809590601376309647989831}{759099987149377425283108441763173548593992409589189300079164170349} a^{13} - \frac{339792542936965333034831130460948304117355979580950376442767817067}{759099987149377425283108441763173548593992409589189300079164170349} a^{12} + \frac{39134660454729224860668501556408071329770798036260694160933659284}{84344443016597491698123160195908172065999156621021033342129352261} a^{11} - \frac{6353656392648933860788050500635214817686598814905868949458266741}{84344443016597491698123160195908172065999156621021033342129352261} a^{10} + \frac{286324513115907899496602637327998313925473023943263360371532120839}{759099987149377425283108441763173548593992409589189300079164170349} a^{9} + \frac{1854533385453276439025266693111480683128157497171189843084613961}{13317543634199603952335235820406553484105129992792794738230950357} a^{8} - \frac{157942032598395273190716009892719448489760690038233737755006650584}{759099987149377425283108441763173548593992409589189300079164170349} a^{7} - \frac{7228261161358912015214993594607888099290491522884533191120995845}{39952630902598811857005707461219660452315389978378384214692851071} a^{6} + \frac{203254353502105946365289874471980844211796144357902736231158107274}{759099987149377425283108441763173548593992409589189300079164170349} a^{5} - \frac{27296703205867204172551570757125491899770518366206635174827754848}{84344443016597491698123160195908172065999156621021033342129352261} a^{4} + \frac{20298685193594702783024229311708072329052131742296400857182602092}{58392306703798263483316033981782580661076339199168407698397243873} a^{3} - \frac{329654259549413157466453038981640113938905772005582645152386974441}{759099987149377425283108441763173548593992409589189300079164170349} a^{2} - \frac{196951739187393153506012934450131407720682799701156462515791117110}{759099987149377425283108441763173548593992409589189300079164170349} a + \frac{123890417338494883313861097280590840788369537782930074027236465578}{253033329049792475094369480587724516197997469863063100026388056783}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62045702529.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.160801.1, 10.10.80803005003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 401 | Data not computed | ||||||