Normalized defining polynomial
\( x^{20} - x^{19} - 22 x^{18} + 103 x^{17} - 339 x^{16} + 251 x^{15} + 2166 x^{14} - 7737 x^{13} + 13339 x^{12} + 31738 x^{11} - 170685 x^{10} + 54973 x^{9} + 571581 x^{8} - 967984 x^{7} - 11999 x^{6} + 3098069 x^{5} - 2474812 x^{4} - 5082669 x^{3} + 2800900 x^{2} + 4193337 x + 559701 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3280906026328914297094848663330078125=5^{15}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{51} a^{18} + \frac{13}{51} a^{17} + \frac{13}{51} a^{16} + \frac{2}{17} a^{15} - \frac{8}{17} a^{14} + \frac{2}{51} a^{13} + \frac{10}{51} a^{12} + \frac{14}{51} a^{11} - \frac{22}{51} a^{10} - \frac{4}{51} a^{9} - \frac{23}{51} a^{8} + \frac{2}{17} a^{7} + \frac{7}{17} a^{6} + \frac{20}{51} a^{5} - \frac{16}{51} a^{4} + \frac{7}{17} a^{3} + \frac{8}{51} a^{2} + \frac{25}{51} a + \frac{7}{17}$, $\frac{1}{149394249630850065423633892592430045528012442199716348443777321} a^{19} + \frac{513573285104720311239532757366817221871881850624427914711724}{149394249630850065423633892592430045528012442199716348443777321} a^{18} - \frac{24211284370518095228056437861186456881511812642775424865907176}{149394249630850065423633892592430045528012442199716348443777321} a^{17} - \frac{2973769528695653000074335651115942716302743231493690781269759}{49798083210283355141211297530810015176004147399905449481259107} a^{16} - \frac{13181148101811956533194505508675880723071015705663832596388657}{49798083210283355141211297530810015176004147399905449481259107} a^{15} - \frac{32390165540956392213924945667062275617897638575387155280402287}{149394249630850065423633892592430045528012442199716348443777321} a^{14} + \frac{11728326014055727131168870925379858935874402416691509090889812}{149394249630850065423633892592430045528012442199716348443777321} a^{13} + \frac{31155752313167259240440027053711768791030234706716259763479847}{149394249630850065423633892592430045528012442199716348443777321} a^{12} - \frac{60553321446349783449570542507785763008742749455587383629935257}{149394249630850065423633892592430045528012442199716348443777321} a^{11} + \frac{50915552792015092935505692378390727886438546878350767487657998}{149394249630850065423633892592430045528012442199716348443777321} a^{10} + \frac{33535186151769668620549126520298197515668750790703591038598293}{149394249630850065423633892592430045528012442199716348443777321} a^{9} + \frac{825587707069787088528424143641177379391149730953924000523235}{2929299012369609125953605737106471480941420435288555851838771} a^{8} - \frac{21212967295141491101760726550311177323559684829566900193913568}{49798083210283355141211297530810015176004147399905449481259107} a^{7} + \frac{53241196102470912305994358618770241968865803693028188545951249}{149394249630850065423633892592430045528012442199716348443777321} a^{6} + \frac{64845458744658638156984144227667652479830860780589422253510616}{149394249630850065423633892592430045528012442199716348443777321} a^{5} - \frac{5734014428610806953564164714336866749392412625917460110755063}{49798083210283355141211297530810015176004147399905449481259107} a^{4} + \frac{60577152459360125456905646202246938842502762023389299684759846}{149394249630850065423633892592430045528012442199716348443777321} a^{3} - \frac{70667573938825083474151586196013227908449858891775710061185112}{149394249630850065423633892592430045528012442199716348443777321} a^{2} - \frac{17017446955214683182758163398786854978793547347881791854677735}{49798083210283355141211297530810015176004147399905449481259107} a + \frac{1675564519004144256018953280395626964953986037648213824533126}{49798083210283355141211297530810015176004147399905449481259107}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57933797723.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.160801.1, 10.10.80803005003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 401 | Data not computed | ||||||