Normalized defining polynomial
\( x^{20} - 14 x^{18} - 9 x^{17} + 61 x^{16} + 128 x^{15} + 77 x^{14} - 137 x^{13} - 553 x^{12} - 790 x^{11} - 665 x^{10} - 820 x^{9} - 433 x^{8} + 168 x^{7} + 289 x^{6} + 1302 x^{5} + 986 x^{4} - 702 x^{3} - 384 x^{2} + 135 x - 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3143662735061279800077532193241=3^{4}\cdot 19^{2}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{4}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{2}{9} a^{8} - \frac{4}{9} a^{7} - \frac{2}{9} a^{6} + \frac{4}{9} a^{5} + \frac{2}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{15} - \frac{1}{9} a^{14} + \frac{4}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{2}{9} a^{9} - \frac{4}{9} a^{8} - \frac{2}{9} a^{7} + \frac{4}{9} a^{6} + \frac{2}{9} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{117} a^{18} + \frac{1}{117} a^{17} - \frac{2}{117} a^{16} - \frac{28}{117} a^{13} + \frac{10}{117} a^{12} + \frac{11}{39} a^{11} + \frac{58}{117} a^{10} + \frac{7}{39} a^{9} - \frac{5}{13} a^{8} - \frac{49}{117} a^{7} + \frac{37}{117} a^{6} + \frac{17}{117} a^{5} + \frac{11}{117} a^{4} + \frac{2}{13} a^{3} + \frac{11}{39} a^{2} + \frac{4}{13} a + \frac{6}{13}$, $\frac{1}{4600055364167940004545027291} a^{19} - \frac{11084061679115971219493437}{4600055364167940004545027291} a^{18} + \frac{181027965684620241989838104}{4600055364167940004545027291} a^{17} + \frac{108310332843439522344324493}{4600055364167940004545027291} a^{16} + \frac{4585395106124877796044733}{117950137542767692424231469} a^{15} + \frac{10334282639096977054775552}{4600055364167940004545027291} a^{14} + \frac{12479811537974674907052301}{117950137542767692424231469} a^{13} - \frac{1271099129216882516158345421}{4600055364167940004545027291} a^{12} + \frac{2088211824079098899373325096}{4600055364167940004545027291} a^{11} - \frac{14615749563134226918514130}{4600055364167940004545027291} a^{10} - \frac{43758356771141977400282840}{1533351788055980001515009097} a^{9} + \frac{1148463643893033335619990887}{4600055364167940004545027291} a^{8} + \frac{12426192232192905150186793}{39316712514255897474743823} a^{7} - \frac{43157598274386123347504401}{1533351788055980001515009097} a^{6} + \frac{297507267429918471919789957}{4600055364167940004545027291} a^{5} - \frac{1636074402152640245407904635}{4600055364167940004545027291} a^{4} - \frac{428718677798773615104318725}{1533351788055980001515009097} a^{3} - \frac{508862452191614186313795470}{1533351788055980001515009097} a^{2} + \frac{76645086114000791989389}{569807427742839093836867} a + \frac{169364762973166904547329930}{511117262685326667171669699}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47319000.8862 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n347 are not computed |
| Character table for t20n347 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||