Normalized defining polynomial
\( x^{20} - 4 x^{19} + 19 x^{18} - 72 x^{17} + 97 x^{16} - 90 x^{15} + 60 x^{14} + 561 x^{13} - 1966 x^{12} + 411 x^{11} + 1183 x^{10} + 2741 x^{9} + 4717 x^{8} - 6094 x^{7} - 2788 x^{6} + 2630 x^{5} + 1562 x^{4} + 39 x^{3} - 252 x^{2} - 90 x - 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31427919143590467585816658408329=3^{6}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{6} a^{16} - \frac{1}{6} a^{14} + \frac{1}{3} a^{11} + \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2}$, $\frac{1}{12} a^{17} - \frac{1}{12} a^{16} + \frac{1}{12} a^{15} - \frac{1}{12} a^{14} - \frac{1}{6} a^{13} + \frac{1}{12} a^{11} - \frac{1}{2} a^{10} + \frac{5}{12} a^{9} + \frac{1}{12} a^{8} + \frac{5}{12} a^{7} - \frac{1}{6} a^{6} + \frac{5}{12} a^{5} - \frac{1}{12} a^{3} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4201128} a^{18} + \frac{7069}{175047} a^{17} + \frac{1747}{175047} a^{16} + \frac{9457}{175047} a^{15} + \frac{338113}{4201128} a^{14} - \frac{170023}{2100564} a^{13} - \frac{18855}{466792} a^{12} - \frac{1888057}{4201128} a^{11} + \frac{2021515}{4201128} a^{10} + \frac{437593}{2100564} a^{9} + \frac{833803}{2100564} a^{8} - \frac{1089577}{4201128} a^{7} - \frac{58235}{221112} a^{6} - \frac{2006207}{4201128} a^{5} - \frac{336781}{4201128} a^{4} + \frac{52685}{1400376} a^{3} - \frac{290585}{1400376} a^{2} - \frac{62857}{233396} a - \frac{134851}{466792}$, $\frac{1}{37398337199953819846655247504} a^{19} - \frac{614724550690854498659}{37398337199953819846655247504} a^{18} - \frac{99331840544728400651958439}{3116528099996151653887937292} a^{17} + \frac{5294695549746569271029311}{84230489189085179834809116} a^{16} + \frac{2333259865635148280343317701}{37398337199953819846655247504} a^{15} + \frac{207658106697262227866357627}{37398337199953819846655247504} a^{14} - \frac{2156767936153235854245181325}{37398337199953819846655247504} a^{13} - \frac{582846128276369044288499329}{9349584299988454961663811876} a^{12} + \frac{1721116061105167444595196439}{6233056199992303307775874584} a^{11} + \frac{1777096331215394547559557121}{4155370799994868871850583056} a^{10} - \frac{4517830263194665269223630805}{9349584299988454961663811876} a^{9} - \frac{8109006021199511003940257063}{37398337199953819846655247504} a^{8} + \frac{152005969912795027233543573}{692561799999144811975097176} a^{7} + \frac{2012506249351031913454537781}{9349584299988454961663811876} a^{6} - \frac{1397119333646769140137241977}{3116528099996151653887937292} a^{5} + \frac{8490156502964203532539717459}{18699168599976909923327623752} a^{4} + \frac{1512836316503025011902889263}{3116528099996151653887937292} a^{3} - \frac{1835480680795083275942369945}{4155370799994868871850583056} a^{2} - \frac{490403400348375220503586739}{1385123599998289623950194352} a + \frac{1069916919427520660318330741}{4155370799994868871850583056}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 254264402.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_2^4:C_5).C_2$ (as 20T84):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $(C_2\times C_2^4:C_5).C_2$ |
| Character table for $(C_2\times C_2^4:C_5).C_2$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||