Normalized defining polynomial
\( x^{20} - 10 x^{18} + 21 x^{16} + 88 x^{14} - 104 x^{13} - 287 x^{12} - 16 x^{11} + 810 x^{10} + 1232 x^{9} - 3411 x^{8} - 832 x^{7} + 4388 x^{6} - 276 x^{5} - 1856 x^{4} + 232 x^{3} + 120 x^{2} - 188 x - 49 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30743450172982969617507942400=2^{40}\cdot 5^{2}\cdot 5783^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 5783$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} + \frac{5}{11} a^{17} + \frac{5}{11} a^{16} - \frac{3}{11} a^{15} - \frac{3}{11} a^{13} - \frac{4}{11} a^{12} + \frac{5}{11} a^{11} - \frac{2}{11} a^{10} + \frac{1}{11} a^{9} - \frac{1}{11} a^{8} - \frac{4}{11} a^{7} - \frac{1}{11} a^{4} + \frac{5}{11} a^{3} + \frac{5}{11} a^{2} - \frac{2}{11} a + \frac{5}{11}$, $\frac{1}{323025094378374123484164217667987} a^{19} + \frac{7463841693412351382254635753665}{323025094378374123484164217667987} a^{18} + \frac{72372711439458119834659838222303}{323025094378374123484164217667987} a^{17} - \frac{7695803657966424211920264779783}{29365917670761283953105837969817} a^{16} - \frac{132015010943443379916010196561556}{323025094378374123484164217667987} a^{15} + \frac{49436825825184946292480515515311}{323025094378374123484164217667987} a^{14} + \frac{92566100573599751064457167146308}{323025094378374123484164217667987} a^{13} - \frac{101775302106603071951690523835265}{323025094378374123484164217667987} a^{12} - \frac{90470474367133669143156930312676}{323025094378374123484164217667987} a^{11} + \frac{155377121505526639984268755388419}{323025094378374123484164217667987} a^{10} + \frac{156387805178888600658835754452174}{323025094378374123484164217667987} a^{9} + \frac{14966960668583156983036608752422}{323025094378374123484164217667987} a^{8} + \frac{62960543432967248966820726562002}{323025094378374123484164217667987} a^{7} + \frac{4421651740628302640689173693348}{29365917670761283953105837969817} a^{6} - \frac{21136173094025666461068718431339}{323025094378374123484164217667987} a^{5} - \frac{4167086318546696594239544563944}{29365917670761283953105837969817} a^{4} + \frac{41726639994855583524849803598962}{323025094378374123484164217667987} a^{3} - \frac{111658649498687559342288679318589}{323025094378374123484164217667987} a^{2} - \frac{112322197770339642432083016440561}{323025094378374123484164217667987} a + \frac{160206450468889811931559147790051}{323025094378374123484164217667987}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5739160.72004 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n794 are not computed |
| Character table for t20n794 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.3.5783.1, 10.6.1095863140352.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.12.0.1 | $x^{12} - x^{3} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 5783 | Data not computed | ||||||