Properties

Label 20.8.30596832887...3125.1
Degree $20$
Signature $[8, 6]$
Discriminant $3^{4}\cdot 5^{15}\cdot 23^{4}\cdot 89^{7}$
Root discriminant $37.52$
Ramified primes $3, 5, 23, 89$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 20T466

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1069, 2316, 4982, -9711, -8168, -296, 4586, 3698, -784, 3845, -3500, 1805, 338, -1944, 544, 324, -117, -3, -1, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - x^18 - 3*x^17 - 117*x^16 + 324*x^15 + 544*x^14 - 1944*x^13 + 338*x^12 + 1805*x^11 - 3500*x^10 + 3845*x^9 - 784*x^8 + 3698*x^7 + 4586*x^6 - 296*x^5 - 8168*x^4 - 9711*x^3 + 4982*x^2 + 2316*x - 1069)
 
gp: K = bnfinit(x^20 - x^19 - x^18 - 3*x^17 - 117*x^16 + 324*x^15 + 544*x^14 - 1944*x^13 + 338*x^12 + 1805*x^11 - 3500*x^10 + 3845*x^9 - 784*x^8 + 3698*x^7 + 4586*x^6 - 296*x^5 - 8168*x^4 - 9711*x^3 + 4982*x^2 + 2316*x - 1069, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} - x^{18} - 3 x^{17} - 117 x^{16} + 324 x^{15} + 544 x^{14} - 1944 x^{13} + 338 x^{12} + 1805 x^{11} - 3500 x^{10} + 3845 x^{9} - 784 x^{8} + 3698 x^{7} + 4586 x^{6} - 296 x^{5} - 8168 x^{4} - 9711 x^{3} + 4982 x^{2} + 2316 x - 1069 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(30596832887831976379669189453125=3^{4}\cdot 5^{15}\cdot 23^{4}\cdot 89^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.52$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 23, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{12791111916633188643745996987200262877133548129} a^{19} - \frac{3106577312906400216365820997906089342950811308}{12791111916633188643745996987200262877133548129} a^{18} - \frac{5257168067886512509376867869789289878194183173}{12791111916633188643745996987200262877133548129} a^{17} - \frac{174976714479122127168569930335572226781386135}{12791111916633188643745996987200262877133548129} a^{16} + \frac{5790115083104006455657434885478831735020866571}{12791111916633188643745996987200262877133548129} a^{15} - \frac{4951453868313865870002904259928803604487103710}{12791111916633188643745996987200262877133548129} a^{14} + \frac{3281967681173426853406798230300330815417430004}{12791111916633188643745996987200262877133548129} a^{13} - \frac{6202542483027406672452027600508408924169311830}{12791111916633188643745996987200262877133548129} a^{12} - \frac{3500109536892064572537666856146929704962572720}{12791111916633188643745996987200262877133548129} a^{11} - \frac{4849128435301987015787641582308072670639836797}{12791111916633188643745996987200262877133548129} a^{10} - \frac{4079385111647637698850516257162726444533924790}{12791111916633188643745996987200262877133548129} a^{9} - \frac{4625947533919885182957259292524178730728293999}{12791111916633188643745996987200262877133548129} a^{8} + \frac{5718174390350753275085225283312230589396717984}{12791111916633188643745996987200262877133548129} a^{7} + \frac{3468588823855800760655092585482961552269791888}{12791111916633188643745996987200262877133548129} a^{6} - \frac{3656612578445222128295145266236071543787840161}{12791111916633188643745996987200262877133548129} a^{5} + \frac{2971720852274079436618043385589264500228051917}{12791111916633188643745996987200262877133548129} a^{4} - \frac{4235778623024282146123826806907175860124351517}{12791111916633188643745996987200262877133548129} a^{3} - \frac{4366800776115451999863076523787851492632152800}{12791111916633188643745996987200262877133548129} a^{2} - \frac{998860647644893608992464779396280650712376989}{12791111916633188643745996987200262877133548129} a + \frac{2774082184246269772507103830469523512928584738}{12791111916633188643745996987200262877133548129}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 71048995.9777 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T466:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 15360
The 90 conjugacy class representatives for t20n466 are not computed
Character table for t20n466 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ R R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.6.0.1$x^{6} - x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
3.6.0.1$x^{6} - x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.12.11.2$x^{12} - 20$$12$$1$$11$$S_3 \times C_4$$[\ ]_{12}^{2}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
$89$89.3.0.1$x^{3} - x + 7$$1$$3$$0$$C_3$$[\ ]^{3}$
89.3.0.1$x^{3} - x + 7$$1$$3$$0$$C_3$$[\ ]^{3}$
89.4.2.1$x^{4} + 979 x^{2} + 285156$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.4.2.1$x^{4} + 979 x^{2} + 285156$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89.6.3.1$x^{6} - 178 x^{4} + 7921 x^{2} - 34543481$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$