Normalized defining polynomial
\( x^{20} - 4 x^{19} - 11 x^{18} + 35 x^{17} + 180 x^{16} - 604 x^{15} - 614 x^{14} + 5809 x^{13} - 11255 x^{12} + 3895 x^{11} + 25814 x^{10} - 62181 x^{9} + 69156 x^{8} - 31205 x^{7} - 23235 x^{6} + 53480 x^{5} - 48760 x^{4} + 27675 x^{3} - 10200 x^{2} + 2250 x - 225 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(303639178182437387390899658203125=3^{4}\cdot 5^{17}\cdot 23^{8}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{45} a^{16} + \frac{2}{15} a^{15} - \frac{7}{15} a^{14} + \frac{4}{9} a^{13} - \frac{2}{9} a^{12} + \frac{11}{45} a^{11} - \frac{14}{45} a^{10} - \frac{7}{15} a^{9} - \frac{1}{3} a^{8} - \frac{1}{9} a^{7} - \frac{7}{15} a^{6} + \frac{14}{45} a^{5} + \frac{11}{45} a^{4} - \frac{1}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{135} a^{17} + \frac{1}{135} a^{16} - \frac{2}{45} a^{15} - \frac{2}{27} a^{14} - \frac{4}{27} a^{13} + \frac{61}{135} a^{12} - \frac{8}{45} a^{11} + \frac{49}{135} a^{10} - \frac{1}{3} a^{9} - \frac{4}{27} a^{8} + \frac{4}{135} a^{7} - \frac{61}{135} a^{6} + \frac{31}{135} a^{5} - \frac{4}{9} a^{4} + \frac{4}{9} a^{3} - \frac{2}{27} a^{2} + \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{802388681775} a^{18} - \frac{1537898809}{802388681775} a^{17} + \frac{6188301364}{802388681775} a^{16} - \frac{220498696}{6977292885} a^{15} + \frac{8676644573}{53492578785} a^{14} + \frac{130368775286}{802388681775} a^{13} + \frac{385491739651}{802388681775} a^{12} + \frac{124473645784}{802388681775} a^{11} - \frac{67347351496}{160477736355} a^{10} + \frac{26786180687}{160477736355} a^{9} + \frac{100651119629}{802388681775} a^{8} - \frac{96865199227}{267462893925} a^{7} - \frac{32855326523}{267462893925} a^{6} - \frac{59771263231}{160477736355} a^{5} + \frac{4965354901}{10698515757} a^{4} - \frac{14587832867}{160477736355} a^{3} + \frac{42980892499}{160477736355} a^{2} - \frac{200434598}{3566171919} a + \frac{4029224776}{10698515757}$, $\frac{1}{2407166045325} a^{19} - \frac{1}{2407166045325} a^{18} - \frac{3075797633}{2407166045325} a^{17} + \frac{13914501557}{2407166045325} a^{16} - \frac{8758920772}{53492578785} a^{15} + \frac{851593791311}{2407166045325} a^{14} - \frac{722417291711}{2407166045325} a^{13} - \frac{966620218283}{2407166045325} a^{12} - \frac{1160913773123}{2407166045325} a^{11} - \frac{117039999679}{481433209065} a^{10} - \frac{448302907351}{2407166045325} a^{9} + \frac{282999588467}{802388681775} a^{8} + \frac{345235285336}{802388681775} a^{7} - \frac{607651088642}{2407166045325} a^{6} + \frac{4275513421}{32095547271} a^{5} - \frac{4253758774}{96286641813} a^{4} + \frac{104128783513}{481433209065} a^{3} - \frac{5259320561}{160477736355} a^{2} - \frac{15605546228}{32095547271} a - \frac{725671115}{10698515757}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 903877418.282 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.5.767625.1, 10.6.1558561331953125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.12.0.1 | $x^{12} - x^{4} - x^{3} - x^{2} + x - 1$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 5 | Data not computed | ||||||
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89 | Data not computed | ||||||