Normalized defining polynomial
\( x^{20} - x^{19} - 5 x^{18} + 11 x^{17} - 25 x^{16} + 58 x^{15} - 51 x^{14} - 22 x^{13} + 31 x^{12} - 42 x^{11} + 560 x^{10} - 1473 x^{9} + 1589 x^{8} - 583 x^{7} - 855 x^{6} + 2054 x^{5} - 2259 x^{4} + 1617 x^{3} - 856 x^{2} + 295 x - 43 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3009103398689521267119563776=2^{10}\cdot 11^{18}\cdot 727^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{697005940206193696755485051} a^{19} - \frac{279638348350135881791068682}{697005940206193696755485051} a^{18} + \frac{179909964867106329917761877}{697005940206193696755485051} a^{17} + \frac{98074976704181018411270697}{697005940206193696755485051} a^{16} + \frac{206053692536102876878514947}{697005940206193696755485051} a^{15} - \frac{215031991513007069431880917}{697005940206193696755485051} a^{14} + \frac{13104877351125319126798355}{30304606095921465076325437} a^{13} + \frac{210493954589163583579373577}{697005940206193696755485051} a^{12} - \frac{4092409923898661594059203}{30304606095921465076325437} a^{11} + \frac{174952818933559774739830903}{697005940206193696755485051} a^{10} - \frac{332384785174455240823549404}{697005940206193696755485051} a^{9} - \frac{94803352441254155312024409}{697005940206193696755485051} a^{8} + \frac{73054960740009193221790366}{697005940206193696755485051} a^{7} + \frac{345033151173535703243042127}{697005940206193696755485051} a^{6} - \frac{236388593739569083015600371}{697005940206193696755485051} a^{5} + \frac{199593994014715735417890026}{697005940206193696755485051} a^{4} - \frac{52587931756708815190502747}{697005940206193696755485051} a^{3} + \frac{325212227732993160630092740}{697005940206193696755485051} a^{2} + \frac{287623844431568941152871216}{697005940206193696755485051} a + \frac{105314658752364714981835931}{697005940206193696755485051}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1358534.58752 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n751 are not computed |
| Character table for t20n751 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.155838906487.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 11 | Data not computed | ||||||
| 727 | Data not computed | ||||||