Normalized defining polynomial
\( x^{20} - 6 x^{19} + 11 x^{18} - 18 x^{17} + 67 x^{16} - 124 x^{15} + 76 x^{14} - 164 x^{13} - 43 x^{12} + 1012 x^{11} - 1203 x^{10} - 232 x^{9} - 463 x^{8} + 6362 x^{7} - 9302 x^{6} + 3616 x^{5} + 3473 x^{4} - 3358 x^{3} - 35 x^{2} + 454 x + 31 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2965836131318190080000000000000=2^{24}\cdot 5^{13}\cdot 3469^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{41} a^{18} - \frac{4}{41} a^{17} + \frac{13}{41} a^{16} + \frac{9}{41} a^{15} + \frac{10}{41} a^{14} - \frac{14}{41} a^{13} - \frac{16}{41} a^{12} - \frac{8}{41} a^{11} - \frac{14}{41} a^{10} + \frac{2}{41} a^{9} + \frac{14}{41} a^{8} - \frac{20}{41} a^{7} + \frac{6}{41} a^{6} - \frac{17}{41} a^{5} - \frac{10}{41} a^{4} - \frac{18}{41} a^{3} + \frac{16}{41} a^{2} + \frac{20}{41} a + \frac{1}{41}$, $\frac{1}{1450656333086796388827377566746944081} a^{19} + \frac{11962022649014231921213374165820383}{1450656333086796388827377566746944081} a^{18} - \frac{10072374735316063345376831515742134}{35381861782604789971399452847486441} a^{17} + \frac{17409396686661236419689831482333586}{35381861782604789971399452847486441} a^{16} + \frac{269213247621818722597535358631718115}{1450656333086796388827377566746944081} a^{15} - \frac{55543072770136889136567033438144234}{1450656333086796388827377566746944081} a^{14} + \frac{9620552685695818429841084480164558}{35381861782604789971399452847486441} a^{13} - \frac{413392676038619354679536035499810134}{1450656333086796388827377566746944081} a^{12} - \frac{326776157905702401050569323421045645}{1450656333086796388827377566746944081} a^{11} - \frac{522586584080405189303490548253963118}{1450656333086796388827377566746944081} a^{10} + \frac{2428666494231942432737626490312015}{35381861782604789971399452847486441} a^{9} + \frac{366919509471981360595940521679008308}{1450656333086796388827377566746944081} a^{8} - \frac{575502052915430581671708226424511683}{1450656333086796388827377566746944081} a^{7} - \frac{258508649648654432349856929838169309}{1450656333086796388827377566746944081} a^{6} + \frac{543431914707654771607203122312731950}{1450656333086796388827377566746944081} a^{5} + \frac{8061350216494127924922547427393507}{46795365583445044800883147314417551} a^{4} + \frac{187197436681140701767421634412438119}{1450656333086796388827377566746944081} a^{3} - \frac{408357718644455286714107467233380221}{1450656333086796388827377566746944081} a^{2} - \frac{43138820131286691307174111998683148}{1450656333086796388827377566746944081} a - \frac{2351359289878899706114737120819029}{46795365583445044800883147314417551}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56848953.9954 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n755 are not computed |
| Character table for t20n755 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 3469 | Data not computed | ||||||