Normalized defining polynomial
\( x^{20} - 7 x^{19} + 32 x^{18} - 95 x^{17} + 196 x^{16} - 242 x^{15} - 223 x^{14} + 1763 x^{13} - 4717 x^{12} + 8050 x^{11} - 8117 x^{10} - 503 x^{9} + 17749 x^{8} - 25864 x^{7} + 23471 x^{6} + 167 x^{5} - 26570 x^{4} + 15915 x^{3} - 6673 x^{2} - 318 x + 503 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2946937245124912611611467841536=2^{26}\cdot 33769^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{397832531096851733780955149187802571414686573} a^{19} + \frac{96963496679223024721905824404982997250026231}{397832531096851733780955149187802571414686573} a^{18} + \frac{50034285412153977272160338908913654853425455}{397832531096851733780955149187802571414686573} a^{17} + \frac{86028559199737595656824945715399390171668992}{397832531096851733780955149187802571414686573} a^{16} + \frac{61643728441153745317571416470643604914382786}{397832531096851733780955149187802571414686573} a^{15} - \frac{107858752089582446813556908885440610383359992}{397832531096851733780955149187802571414686573} a^{14} + \frac{147842426618577282326949820282446871232377681}{397832531096851733780955149187802571414686573} a^{13} - \frac{8913511930822893545845690682482797081998969}{397832531096851733780955149187802571414686573} a^{12} - \frac{73158626148218404109361831256873801328750783}{397832531096851733780955149187802571414686573} a^{11} - \frac{144185152990736332630971338511362710997497626}{397832531096851733780955149187802571414686573} a^{10} - \frac{101224231226687354099477446081087401189107287}{397832531096851733780955149187802571414686573} a^{9} - \frac{22763313142895436441514296319913018337952391}{397832531096851733780955149187802571414686573} a^{8} + \frac{99475824170964292142482907739425938073048921}{397832531096851733780955149187802571414686573} a^{7} + \frac{144736941037620803516656048370752344014420645}{397832531096851733780955149187802571414686573} a^{6} + \frac{153157601192610077807470919929921927027252466}{397832531096851733780955149187802571414686573} a^{5} - \frac{89395405608579714545260080118911368759899410}{397832531096851733780955149187802571414686573} a^{4} - \frac{61468038908623970053985918667852352703720432}{397832531096851733780955149187802571414686573} a^{3} + \frac{28372085850099973193566857153889360831826582}{397832531096851733780955149187802571414686573} a^{2} + \frac{1098743719437354207853784912014467376963932}{397832531096851733780955149187802571414686573} a - \frac{121596461538119600320259419773509420077561680}{397832531096851733780955149187802571414686573}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 75687957.4731 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n989 are not computed |
| Character table for t20n989 is not computed |
Intermediate fields
| 5.5.135076.1, 10.8.1167713649664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 2.12.26.34 | $x^{12} + 4 x^{8} - 2 x^{4} + 4 x^{3} + 4 x^{2} - 2$ | $12$ | $1$ | $26$ | 12T148 | $[4/3, 4/3, 2, 2, 8/3, 8/3]_{3}^{2}$ | |
| 33769 | Data not computed | ||||||