Normalized defining polynomial
\( x^{20} + 4 x^{18} - 25 x^{17} + 44 x^{16} + 122 x^{15} - 1968 x^{14} - 1744 x^{13} + 11769 x^{12} + 57187 x^{11} - 84230 x^{10} - 312542 x^{9} + 242180 x^{8} + 613617 x^{7} - 91901 x^{6} - 126223 x^{5} - 15718 x^{4} - 704324 x^{3} - 752368 x^{2} - 178160 x + 41056 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(288439636523296289152014122591863377=3^{10}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{14} - \frac{1}{2} a^{12} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{40} a^{18} + \frac{1}{10} a^{17} + \frac{1}{10} a^{16} + \frac{7}{40} a^{15} + \frac{1}{5} a^{14} + \frac{1}{20} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{3}{8} a^{10} + \frac{3}{8} a^{9} - \frac{1}{4} a^{8} + \frac{9}{20} a^{7} + \frac{3}{10} a^{6} + \frac{17}{40} a^{5} + \frac{3}{8} a^{4} + \frac{1}{8} a^{3} - \frac{9}{20} a^{2} + \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{28754978224976578636687861165444362579551147232612628480738160} a^{19} - \frac{1400558750755443691064380088036229036789181982447692810343}{1797186139061036164792991322840272661221946702038289280046135} a^{18} + \frac{180337928042807086952542466268256785929375749159949018941391}{1797186139061036164792991322840272661221946702038289280046135} a^{17} - \frac{1496100430205759849804600403186131679444633412670217485429201}{28754978224976578636687861165444362579551147232612628480738160} a^{16} - \frac{1749093281907016761238846910210929466789595344106247563139409}{7188744556244144659171965291361090644887786808153157120184540} a^{15} - \frac{3893295285523374877243413403621762480004839820523021646706377}{14377489112488289318343930582722181289775573616306314240369080} a^{14} - \frac{880537954576700769836689981690801670990985638481314915661919}{3594372278122072329585982645680545322443893404076578560092270} a^{13} + \frac{671708282582682282533418476191964987588682307704592766945501}{3594372278122072329585982645680545322443893404076578560092270} a^{12} + \frac{4014507470951771428701869510387064443482356183249796800354121}{28754978224976578636687861165444362579551147232612628480738160} a^{11} - \frac{52764471821690450137254563300138543550271711729252386933943}{122361609467985441007182387938061117359792115883457993535056} a^{10} + \frac{1239742941810061423400851391931159860391556472363762407625623}{2875497822497657863668786116544436257955114723261262848073816} a^{9} - \frac{3977014133577989093309650145093007999333665892759319963787401}{14377489112488289318343930582722181289775573616306314240369080} a^{8} - \frac{263872256218667662899816957125841310287789222491212066152271}{7188744556244144659171965291361090644887786808153157120184540} a^{7} + \frac{5184062078517030717041115028643326350914794843442785325452873}{28754978224976578636687861165444362579551147232612628480738160} a^{6} + \frac{1356031426551535462810455918614164690621072621765397360616211}{28754978224976578636687861165444362579551147232612628480738160} a^{5} - \frac{2571555108722669418018329170745916985211782723213426642621735}{5750995644995315727337572233088872515910229446522525696147632} a^{4} + \frac{6781430385300943494944581444589437005791955257328145647427891}{14377489112488289318343930582722181289775573616306314240369080} a^{3} - \frac{114100272428646261311042299704390014987278768177603491387030}{359437227812207232958598264568054532244389340407657856009227} a^{2} + \frac{238850175555532959259351134587166277332806623920433686815763}{1797186139061036164792991322840272661221946702038289280046135} a + \frac{114016330108908925477352291078833407845091199037483595052863}{1797186139061036164792991322840272661221946702038289280046135}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10003305907.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n285 |
| Character table for t20n285 is not computed |
Intermediate fields
| 10.10.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||