Normalized defining polynomial
\( x^{20} - x^{18} + 6 x^{16} - 44 x^{15} - 137 x^{14} + 86 x^{13} + 341 x^{12} - 186 x^{11} - 402 x^{10} + 2528 x^{9} + 4445 x^{8} - 2840 x^{7} - 11639 x^{6} - 7962 x^{5} + 3197 x^{4} + 6836 x^{3} + 1923 x^{2} - 1314 x - 621 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(281124869512857892173749682176=2^{20}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{51} a^{17} + \frac{1}{17} a^{16} - \frac{2}{51} a^{15} - \frac{2}{17} a^{14} - \frac{4}{51} a^{13} - \frac{5}{51} a^{12} - \frac{1}{17} a^{11} + \frac{7}{51} a^{10} - \frac{13}{51} a^{9} - \frac{11}{51} a^{8} + \frac{8}{17} a^{7} + \frac{25}{51} a^{6} + \frac{23}{51} a^{5} - \frac{2}{17} a^{4} - \frac{2}{51} a^{3} + \frac{8}{17} a^{2} - \frac{2}{51} a - \frac{5}{17}$, $\frac{1}{51} a^{18} + \frac{2}{17} a^{16} - \frac{1}{17} a^{14} + \frac{7}{51} a^{13} - \frac{5}{51} a^{12} - \frac{6}{17} a^{11} + \frac{1}{3} a^{10} + \frac{11}{51} a^{9} - \frac{11}{51} a^{8} + \frac{4}{51} a^{7} + \frac{16}{51} a^{6} - \frac{8}{17} a^{5} - \frac{6}{17} a^{4} + \frac{13}{51} a^{3} - \frac{23}{51} a^{2} + \frac{8}{51} a - \frac{2}{17}$, $\frac{1}{132263489504931441996890756673} a^{19} + \frac{86190491618228359901114231}{44087829834977147332296918891} a^{18} + \frac{1006875838917306685109971862}{132263489504931441996890756673} a^{17} + \frac{6950562594035429344340156923}{44087829834977147332296918891} a^{16} - \frac{3041152324683200311211902462}{44087829834977147332296918891} a^{15} - \frac{3907965958159755166556293403}{132263489504931441996890756673} a^{14} - \frac{17785506995452242824195930279}{132263489504931441996890756673} a^{13} - \frac{13578415401675504610667737726}{132263489504931441996890756673} a^{12} - \frac{41168920580349494583381186490}{132263489504931441996890756673} a^{11} - \frac{19227861910071190460998493989}{44087829834977147332296918891} a^{10} + \frac{15723303564195155507498902546}{44087829834977147332296918891} a^{9} + \frac{46178602433388909549493688276}{132263489504931441996890756673} a^{8} + \frac{44490076069121200595579448233}{132263489504931441996890756673} a^{7} + \frac{35828483859734354187762181714}{132263489504931441996890756673} a^{6} + \frac{14503037371675592889435932065}{132263489504931441996890756673} a^{5} - \frac{6689623431758908026931178345}{14695943278325715777432306297} a^{4} + \frac{1669304969563838428179801106}{7780205264995967176287691569} a^{3} - \frac{61809899068615823160763690711}{132263489504931441996890756673} a^{2} + \frac{4949084189312527613006498276}{14695943278325715777432306297} a - \frac{4974031256163126571806324212}{14695943278325715777432306297}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 41020468.0816 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 277 conjugacy class representatives for t20n848 are not computed |
| Character table for t20n848 is not computed |
Intermediate fields
| 5.5.160801.1, 10.8.26477528679424.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 401 | Data not computed | ||||||