Normalized defining polynomial
\( x^{20} + 2 x^{18} - 79 x^{16} - 21 x^{14} + 938 x^{12} + 439 x^{10} - 2874 x^{8} - 2507 x^{6} + 770 x^{4} + 847 x^{2} + 121 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(278668221112378935712597132533321=3^{22}\cdot 11^{8}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{12} - \frac{1}{6} a^{10} + \frac{1}{3} a^{8} - \frac{1}{2} a^{6} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6}$, $\frac{1}{66} a^{15} - \frac{1}{66} a^{13} - \frac{5}{33} a^{11} - \frac{13}{66} a^{9} - \frac{1}{2} a^{8} + \frac{3}{22} a^{7} - \frac{1}{2} a^{6} - \frac{14}{33} a^{5} - \frac{29}{66} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{66} a^{16} - \frac{1}{66} a^{14} - \frac{5}{33} a^{12} - \frac{13}{66} a^{10} - \frac{1}{2} a^{9} + \frac{3}{22} a^{8} - \frac{1}{2} a^{7} - \frac{14}{33} a^{6} - \frac{29}{66} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{66} a^{17} - \frac{1}{6} a^{13} + \frac{5}{33} a^{11} + \frac{29}{66} a^{9} + \frac{7}{33} a^{7} - \frac{4}{11} a^{5} + \frac{13}{33} a^{3} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{2840874167538} a^{18} + \frac{4717830811}{2840874167538} a^{16} + \frac{113559177709}{2840874167538} a^{14} - \frac{31312670476}{129130643979} a^{12} - \frac{97299251381}{946958055846} a^{10} + \frac{288188767400}{1420437083769} a^{8} - \frac{1}{2} a^{7} + \frac{1297186557395}{2840874167538} a^{6} - \frac{1353808368949}{2840874167538} a^{4} - \frac{12320916071}{43043547993} a^{2} - \frac{40252063259}{129130643979}$, $\frac{1}{2840874167538} a^{19} + \frac{4717830811}{2840874167538} a^{17} - \frac{7785733135}{1420437083769} a^{15} - \frac{559748106493}{2840874167538} a^{13} - \frac{70171399687}{473479027923} a^{11} + \frac{417319411379}{1420437083769} a^{9} - \frac{1}{2} a^{8} + \frac{67505380792}{1420437083769} a^{7} - \frac{579024505075}{2840874167538} a^{5} - \frac{1}{2} a^{4} + \frac{30244682389}{946958055846} a^{3} + \frac{48626517461}{258261287958} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 761281923.777 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 48 conjugacy class representatives for t20n277 |
| Character table for t20n277 is not computed |
Intermediate fields
| \(\Q(\sqrt{69}) \), 5.5.5184729.1, 10.4.80644244410323.1, 10.4.5564452864312287.1, 10.10.16693358592936861.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.12.18.85 | $x^{12} + 36 x^{11} + 111 x^{10} + 90 x^{9} + 36 x^{8} + 90 x^{7} + 30 x^{6} + 108 x^{5} - 36 x^{4} + 54 x^{3} - 81 x^{2} + 54 x - 18$ | $6$ | $2$ | $18$ | $D_6$ | $[2]_{2}^{2}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |