Normalized defining polynomial
\( x^{20} - 8 x^{19} + 24 x^{18} - 42 x^{17} + 57 x^{16} + 24 x^{15} - 481 x^{14} + 2142 x^{13} - 6799 x^{12} + 14196 x^{11} - 20613 x^{10} + 21264 x^{9} - 14282 x^{8} + 11226 x^{7} - 12985 x^{6} + 3642 x^{5} + 10733 x^{4} - 5848 x^{3} - 808 x^{2} - 312 x - 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2729663703817172900595808790904832=2^{34}\cdot 7^{9}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7} a^{17} + \frac{3}{7} a^{16} + \frac{1}{7} a^{15} + \frac{1}{7} a^{14} + \frac{3}{7} a^{13} - \frac{2}{7} a^{12} - \frac{2}{7} a^{11} - \frac{3}{7} a^{10} - \frac{1}{7} a^{9} + \frac{2}{7} a^{8} - \frac{2}{7} a^{7} - \frac{1}{7} a^{5} - \frac{2}{7} a^{2} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{61922} a^{18} + \frac{50}{30961} a^{17} - \frac{1191}{30961} a^{16} - \frac{2132}{4423} a^{15} - \frac{3267}{61922} a^{14} - \frac{2022}{30961} a^{13} - \frac{2773}{8846} a^{12} - \frac{11260}{30961} a^{11} + \frac{22507}{61922} a^{10} + \frac{8874}{30961} a^{9} - \frac{25253}{61922} a^{8} + \frac{6595}{30961} a^{7} + \frac{13590}{30961} a^{6} - \frac{13072}{30961} a^{5} - \frac{3899}{8846} a^{4} + \frac{1}{7} a^{3} + \frac{20667}{61922} a^{2} + \frac{1681}{4423} a + \frac{12918}{30961}$, $\frac{1}{20784839358524920959370206042610628} a^{19} + \frac{1101012083664399793706376270}{742315691375890034263221644378951} a^{18} + \frac{704871520864291024856470464843427}{10392419679262460479685103021305314} a^{17} + \frac{156107848781025943038471656014209}{1484631382751780068526443288757902} a^{16} + \frac{2493046507420027096468904227704621}{20784839358524920959370206042610628} a^{15} + \frac{1332887178930616855889668316933877}{5196209839631230239842551510652657} a^{14} + \frac{3666526435378289768212669331849209}{20784839358524920959370206042610628} a^{13} - \frac{2703559185771677746874484930119017}{10392419679262460479685103021305314} a^{12} + \frac{5452308087149256491054737789293627}{20784839358524920959370206042610628} a^{11} - \frac{800244299206578835985151990749872}{5196209839631230239842551510652657} a^{10} + \frac{4849191441377256337962080721459329}{20784839358524920959370206042610628} a^{9} + \frac{1353637856131845464132839300341210}{5196209839631230239842551510652657} a^{8} - \frac{98762036084123237001043311438029}{742315691375890034263221644378951} a^{7} - \frac{614822220250084048107954410840739}{10392419679262460479685103021305314} a^{6} + \frac{8530238560095928322998599602080535}{20784839358524920959370206042610628} a^{5} + \frac{959938200277953561631938031339929}{10392419679262460479685103021305314} a^{4} + \frac{721529129255703780288734984132325}{2969262765503560137052886577515804} a^{3} - \frac{1144206232886000397612244608898366}{5196209839631230239842551510652657} a^{2} + \frac{630601065890654308546403485453845}{1484631382751780068526443288757902} a - \frac{2191965087545249419525022862584316}{5196209839631230239842551510652657}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3878715721.05 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40960 |
| The 124 conjugacy class representatives for t20n633 are not computed |
| Character table for t20n633 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.5.6889792.1, 10.10.379753870426112.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13 | Data not computed | ||||||