Normalized defining polynomial
\( x^{20} - 2 x^{19} - 10 x^{18} + 61 x^{17} - 256 x^{16} + 329 x^{15} + 889 x^{14} - 1258 x^{13} - 1827 x^{12} + 4117 x^{11} - 27692 x^{10} - 39071 x^{9} + 531811 x^{8} - 643326 x^{7} - 1085253 x^{6} + 1882929 x^{5} + 547496 x^{4} - 108351 x^{3} - 3163643 x^{2} + 1716738 x + 507429 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(271489728101173730019304802954487841=67^{8}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{16} - \frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{245666210531886797508437956699839832378271168017237963837539} a^{19} + \frac{10357112644090032872485572667250710638110986706037542121347}{81888736843962265836145985566613277459423722672412654612513} a^{18} + \frac{17844674532599091195618872453873937287595751711089417753296}{245666210531886797508437956699839832378271168017237963837539} a^{17} - \frac{79055874845036627915761527222201374811485028901013250689905}{245666210531886797508437956699839832378271168017237963837539} a^{16} - \frac{451309819193939276338357257971055960503236764298702541106}{3032916179406009845783184650615306572571248987867135356019} a^{15} - \frac{85418672201481926496386428108755191532331234550861690922421}{245666210531886797508437956699839832378271168017237963837539} a^{14} - \frac{34960000239535403208926134429116142813212037380849751473223}{245666210531886797508437956699839832378271168017237963837539} a^{13} - \frac{7235728507276631648338098956558636773050063185940775205707}{27296245614654088612048661855537759153141240890804218204171} a^{12} - \frac{527058100263733790392786201008012815930800198174120119730}{27296245614654088612048661855537759153141240890804218204171} a^{11} - \frac{111175329823547392357472650042684274131776770688803748894734}{245666210531886797508437956699839832378271168017237963837539} a^{10} - \frac{11177552559662331364903480105586397906780958510538762726560}{81888736843962265836145985566613277459423722672412654612513} a^{9} - \frac{43116216216172864160532997172395212404846583101940784506344}{245666210531886797508437956699839832378271168017237963837539} a^{8} + \frac{8089936336086237050648678495888906703915780943393288200511}{27296245614654088612048661855537759153141240890804218204171} a^{7} - \frac{21530185635648259166923204281375577658983356497158060942319}{81888736843962265836145985566613277459423722672412654612513} a^{6} - \frac{11300793118053246204690511131792981752339973849820919838832}{27296245614654088612048661855537759153141240890804218204171} a^{5} + \frac{38502942482021547733442625439096836389050837338595252212916}{81888736843962265836145985566613277459423722672412654612513} a^{4} - \frac{7108924700386978872081437354474241091090173693242206837822}{245666210531886797508437956699839832378271168017237963837539} a^{3} - \frac{39650847121276414313666896894441559274816959399247454925237}{245666210531886797508437956699839832378271168017237963837539} a^{2} - \frac{11896519712094341435563880660978955210612506673027640049308}{81888736843962265836145985566613277459423722672412654612513} a - \frac{2745496932160582632622926399263020177486361101793706921130}{27296245614654088612048661855537759153141240890804218204171}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19939674094.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n324 |
| Character table for t20n324 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.116071900626889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.4.2.2 | $x^{4} - 67 x^{2} + 53868$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.8.4.1 | $x^{8} + 17956 x^{4} - 300763 x^{2} + 80604484$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||