Normalized defining polynomial
\( x^{20} - x^{19} - 13 x^{18} - 9 x^{17} + 115 x^{16} + 781 x^{15} - 482 x^{14} - 6205 x^{13} - 13667 x^{12} + 7949 x^{11} + 121525 x^{10} + 81464 x^{9} - 232598 x^{8} - 650515 x^{7} + 72642 x^{6} + 2836966 x^{5} - 365610 x^{4} - 6377373 x^{3} + 661053 x^{2} + 5356703 x + 243531 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(271489728101173730019304802954487841=67^{8}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{15} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{16} - \frac{1}{9} a^{15} - \frac{1}{9} a^{14} + \frac{2}{9} a^{13} + \frac{2}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{3} a^{10} - \frac{4}{9} a^{9} - \frac{2}{9} a^{7} - \frac{1}{3} a^{6} + \frac{1}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{9} a$, $\frac{1}{27} a^{18} - \frac{2}{27} a^{16} - \frac{11}{27} a^{15} + \frac{1}{27} a^{14} + \frac{13}{27} a^{13} + \frac{1}{27} a^{12} - \frac{13}{27} a^{11} - \frac{7}{27} a^{10} - \frac{4}{27} a^{9} - \frac{2}{27} a^{8} + \frac{13}{27} a^{7} - \frac{2}{27} a^{6} + \frac{2}{27} a^{5} - \frac{8}{27} a^{4} + \frac{1}{3} a^{3} - \frac{1}{27} a^{2} - \frac{10}{27} a - \frac{1}{3}$, $\frac{1}{614116966503555630586363208185276041110381704307295428439045483} a^{19} + \frac{2840879351235018737158083211245196634101530382352191222731337}{614116966503555630586363208185276041110381704307295428439045483} a^{18} - \frac{32172628307809323559139811672911307409141616777421195425977550}{614116966503555630586363208185276041110381704307295428439045483} a^{17} - \frac{96812551326427990556030273156883861312998616895020523138967050}{614116966503555630586363208185276041110381704307295428439045483} a^{16} + \frac{128663697905982905368220595856701576452611545965235268797271058}{614116966503555630586363208185276041110381704307295428439045483} a^{15} - \frac{115550963983560844592321089682718353427861630795938416609508362}{614116966503555630586363208185276041110381704307295428439045483} a^{14} - \frac{131393927125521827176364074330024358580399274755376221013099705}{614116966503555630586363208185276041110381704307295428439045483} a^{13} + \frac{23848740225223378735943070170599251466091970397490106377564819}{204705655501185210195454402728425347036793901435765142813015161} a^{12} - \frac{69355366256253863086078472447537196239430207799830620181818675}{614116966503555630586363208185276041110381704307295428439045483} a^{11} - \frac{272247058698210688874433074812435312323458375061754289091018314}{614116966503555630586363208185276041110381704307295428439045483} a^{10} + \frac{16046519753965065890152677134358941629656868469157331890931384}{204705655501185210195454402728425347036793901435765142813015161} a^{9} + \frac{157992744564998039405614755753394385467183187614550468894347229}{614116966503555630586363208185276041110381704307295428439045483} a^{8} + \frac{35691222121604902820395345347621439731953329320829519456521404}{614116966503555630586363208185276041110381704307295428439045483} a^{7} - \frac{11135309574332729929710143456428911217808144138659331436816056}{68235218500395070065151467576141782345597967145255047604338387} a^{6} + \frac{47364244511942226239207086545939301140414704039141208140653780}{204705655501185210195454402728425347036793901435765142813015161} a^{5} - \frac{117152047547707987165099150851003325910461723950320434194804062}{614116966503555630586363208185276041110381704307295428439045483} a^{4} - \frac{200895221381171775377011331708232825984172154494170375385942396}{614116966503555630586363208185276041110381704307295428439045483} a^{3} - \frac{2301819062297352956070157831931650695477020894937753397920488}{614116966503555630586363208185276041110381704307295428439045483} a^{2} - \frac{74358031468565877654785658171138742371819515519282439567810094}{614116966503555630586363208185276041110381704307295428439045483} a + \frac{9944176723120013610981673992795573316605401283337386260540390}{68235218500395070065151467576141782345597967145255047604338387}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28174813321.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n324 |
| Character table for t20n324 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.116071900626889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.4.2.2 | $x^{4} - 67 x^{2} + 53868$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 67.8.4.1 | $x^{8} + 17956 x^{4} - 300763 x^{2} + 80604484$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||