Normalized defining polynomial
\( x^{20} - 8 x^{19} + 14 x^{18} + 88 x^{17} - 726 x^{16} + 1881 x^{15} + 2036 x^{14} - 26437 x^{13} + 64297 x^{12} + 9772 x^{11} - 408312 x^{10} + 926094 x^{9} - 443907 x^{8} - 2079408 x^{7} + 5461757 x^{6} - 6648924 x^{5} + 4477551 x^{4} - 1228248 x^{3} - 502901 x^{2} + 527068 x - 132651 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(271489728101173730019304802954487841=67^{8}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{431910097985836848808639131388105918908376117037559524151} a^{19} + \frac{13942417207268880352874900596329085268485496230729004363}{143970032661945616269546377129368639636125372345853174717} a^{18} - \frac{171291166809776787913006038962509491601195995917007010804}{431910097985836848808639131388105918908376117037559524151} a^{17} + \frac{51785144241308674189835709741378266245925377624534768214}{431910097985836848808639131388105918908376117037559524151} a^{16} - \frac{75006594089920093557864846489383646654433492106318884031}{431910097985836848808639131388105918908376117037559524151} a^{15} - \frac{27008498709231479146937005180476485074114062537505130014}{431910097985836848808639131388105918908376117037559524151} a^{14} - \frac{15495886937223951166998930432511762744921140184505848382}{143970032661945616269546377129368639636125372345853174717} a^{13} - \frac{22212132092920822070717348931697981934858407818640047862}{431910097985836848808639131388105918908376117037559524151} a^{12} + \frac{5664087806795580247951045349227704476752528494727126064}{11673245891509104021855111659137997808334489649663770923} a^{11} + \frac{174745860350362967489749926941834581557614603069255886401}{431910097985836848808639131388105918908376117037559524151} a^{10} - \frac{80158040796908685488179627871880070534925706358839166715}{431910097985836848808639131388105918908376117037559524151} a^{9} - \frac{16731033172217200828298817230686780130075181486742937902}{431910097985836848808639131388105918908376117037559524151} a^{8} - \frac{26642830600357661642934593518474534820432856710819024441}{431910097985836848808639131388105918908376117037559524151} a^{7} - \frac{76176872391133389867893178220294962284390802921791222110}{431910097985836848808639131388105918908376117037559524151} a^{6} - \frac{101122708700228692130774293630611137997530525909550990}{11074617897072739713042029009951433818163490180450244209} a^{5} - \frac{20160640125712380555847808484617663310232308543489335158}{143970032661945616269546377129368639636125372345853174717} a^{4} - \frac{45451814387490451143303971976378673109207567812412188162}{143970032661945616269546377129368639636125372345853174717} a^{3} - \frac{54973697006985509385997318227922076565971588184155144282}{143970032661945616269546377129368639636125372345853174717} a^{2} + \frac{96858823400163604321424473667104233970175007863573708038}{431910097985836848808639131388105918908376117037559524151} a + \frac{1361833490513055035664836275467649230958051440334379028}{8468825450702683309973316301727567037419139549756069101}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58534754291.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n313 are not computed |
| Character table for t20n313 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.116071900626889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.8.6.2 | $x^{8} + 1541 x^{4} + 646416$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 401 | Data not computed | ||||||