Normalized defining polynomial
\( x^{20} - 6 x^{19} - 3 x^{18} + 44 x^{17} - 28 x^{16} + 91 x^{15} + 310 x^{14} - 1212 x^{13} - 1403 x^{12} + 3661 x^{11} - 1549 x^{10} + 811 x^{9} + 10045 x^{8} - 16810 x^{7} - 8012 x^{6} + 41456 x^{5} - 39932 x^{4} + 7401 x^{3} + 2080 x^{2} + 15 x - 7 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(270294613348055239187250247211813=19^{8}\cdot 293^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{19} a^{16} + \frac{7}{19} a^{15} + \frac{5}{19} a^{14} + \frac{9}{19} a^{13} - \frac{6}{19} a^{11} - \frac{4}{19} a^{10} + \frac{4}{19} a^{9} + \frac{9}{19} a^{8} + \frac{8}{19} a^{7} + \frac{2}{19} a^{6} - \frac{5}{19} a^{5} - \frac{8}{19} a^{4} - \frac{3}{19} a^{3} - \frac{9}{19} a^{2} - \frac{8}{19} a - \frac{7}{19}$, $\frac{1}{19} a^{17} - \frac{6}{19} a^{15} - \frac{7}{19} a^{14} - \frac{6}{19} a^{13} - \frac{6}{19} a^{12} - \frac{6}{19} a^{10} + \frac{2}{19} a^{8} + \frac{3}{19} a^{7} + \frac{8}{19} a^{5} - \frac{4}{19} a^{4} - \frac{7}{19} a^{3} - \frac{2}{19} a^{2} - \frac{8}{19} a - \frac{8}{19}$, $\frac{1}{19} a^{18} - \frac{3}{19} a^{15} + \frac{5}{19} a^{14} - \frac{9}{19} a^{13} - \frac{4}{19} a^{11} - \frac{5}{19} a^{10} + \frac{7}{19} a^{9} - \frac{9}{19} a^{7} + \frac{1}{19} a^{6} + \frac{4}{19} a^{5} + \frac{2}{19} a^{4} - \frac{1}{19} a^{3} - \frac{5}{19} a^{2} + \frac{1}{19} a - \frac{4}{19}$, $\frac{1}{30596963821905189321578961261645182711029} a^{19} + \frac{501996362484333178684837308610511443667}{30596963821905189321578961261645182711029} a^{18} - \frac{576252567265990323832270665590427583670}{30596963821905189321578961261645182711029} a^{17} - \frac{326567362467402421034619383296341834166}{30596963821905189321578961261645182711029} a^{16} + \frac{14221569180835800067397404989343238276772}{30596963821905189321578961261645182711029} a^{15} + \frac{10965851452559842830198793326138608852196}{30596963821905189321578961261645182711029} a^{14} + \frac{3183875363671725638667125202997130728051}{30596963821905189321578961261645182711029} a^{13} - \frac{8714904698588288206143765928981126964426}{30596963821905189321578961261645182711029} a^{12} + \frac{13212517251968465186087016408745938395628}{30596963821905189321578961261645182711029} a^{11} + \frac{8971961976114518621386375640338131721920}{30596963821905189321578961261645182711029} a^{10} + \frac{9143854145189216983081565221600822008826}{30596963821905189321578961261645182711029} a^{9} + \frac{10496742307408082799457062234839928770378}{30596963821905189321578961261645182711029} a^{8} - \frac{846044840063951444218898431691403965497}{30596963821905189321578961261645182711029} a^{7} - \frac{13448126171096739243999089299088313711921}{30596963821905189321578961261645182711029} a^{6} - \frac{14538494751675692702010204134326315654819}{30596963821905189321578961261645182711029} a^{5} + \frac{10430163731122525834809035889614505430353}{30596963821905189321578961261645182711029} a^{4} + \frac{6951931387422113555939649644322931667406}{30596963821905189321578961261645182711029} a^{3} - \frac{10929897126514006319253840728161821290572}{30596963821905189321578961261645182711029} a^{2} + \frac{9663346068023539517203796914532227019884}{30596963821905189321578961261645182711029} a - \frac{9338736724509392519763888654536728776304}{30596963821905189321578961261645182711029}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 599073009.16 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 104 conjugacy class representatives for t20n693 are not computed |
| Character table for t20n693 is not computed |
Intermediate fields
| 10.10.960472390437121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 293 | Data not computed | ||||||