Normalized defining polynomial
\( x^{20} - 14 x^{18} + 75 x^{16} - 157 x^{14} - 161 x^{12} + 1615 x^{10} - 3685 x^{8} + 3850 x^{6} - 1525 x^{4} - 125 x^{2} + 125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(267741240538215680000000000000=2^{20}\cdot 5^{13}\cdot 3803^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3803$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{2}{5} a^{6} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} - \frac{2}{5} a^{7} - \frac{1}{5} a^{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{10} - \frac{2}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{11} - \frac{2}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5}$, $\frac{1}{175} a^{16} + \frac{1}{175} a^{14} + \frac{3}{35} a^{12} - \frac{1}{25} a^{10} + \frac{9}{175} a^{8} + \frac{3}{35} a^{4} + \frac{2}{7} a^{2} + \frac{1}{7}$, $\frac{1}{175} a^{17} + \frac{1}{175} a^{15} + \frac{3}{35} a^{13} - \frac{1}{25} a^{11} + \frac{9}{175} a^{9} + \frac{3}{35} a^{5} + \frac{2}{7} a^{3} + \frac{1}{7} a$, $\frac{1}{165751075} a^{18} - \frac{68321}{165751075} a^{16} - \frac{13060587}{165751075} a^{14} - \frac{14752922}{165751075} a^{12} + \frac{41814558}{165751075} a^{10} - \frac{31007463}{165751075} a^{8} - \frac{11582274}{33150215} a^{6} + \frac{2775974}{6630043} a^{4} + \frac{2668019}{6630043} a^{2} - \frac{2487599}{6630043}$, $\frac{1}{165751075} a^{19} - \frac{68321}{165751075} a^{17} - \frac{13060587}{165751075} a^{15} - \frac{14752922}{165751075} a^{13} + \frac{41814558}{165751075} a^{11} - \frac{31007463}{165751075} a^{9} - \frac{11582274}{33150215} a^{7} + \frac{2775974}{6630043} a^{5} + \frac{2668019}{6630043} a^{3} - \frac{2487599}{6630043} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13278904.0758 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n802 are not computed |
| Character table for t20n802 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.3.19015.1, 10.6.45196278125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 3803 | Data not computed | ||||||