Properties

Label 20.8.26099879633...0256.3
Degree $20$
Signature $[8, 6]$
Discriminant $2^{30}\cdot 11^{16}\cdot 23^{2}$
Root discriminant $26.35$
Ramified primes $2, 11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T340

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -18, -209, -358, 228, -112, -879, 1090, 109, -158, 851, -254, 79, 170, -117, 64, -20, -10, 11, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 + 11*x^18 - 10*x^17 - 20*x^16 + 64*x^15 - 117*x^14 + 170*x^13 + 79*x^12 - 254*x^11 + 851*x^10 - 158*x^9 + 109*x^8 + 1090*x^7 - 879*x^6 - 112*x^5 + 228*x^4 - 358*x^3 - 209*x^2 - 18*x + 1)
 
gp: K = bnfinit(x^20 - 6*x^19 + 11*x^18 - 10*x^17 - 20*x^16 + 64*x^15 - 117*x^14 + 170*x^13 + 79*x^12 - 254*x^11 + 851*x^10 - 158*x^9 + 109*x^8 + 1090*x^7 - 879*x^6 - 112*x^5 + 228*x^4 - 358*x^3 - 209*x^2 - 18*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 6 x^{19} + 11 x^{18} - 10 x^{17} - 20 x^{16} + 64 x^{15} - 117 x^{14} + 170 x^{13} + 79 x^{12} - 254 x^{11} + 851 x^{10} - 158 x^{9} + 109 x^{8} + 1090 x^{7} - 879 x^{6} - 112 x^{5} + 228 x^{4} - 358 x^{3} - 209 x^{2} - 18 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(26099879633934179709805920256=2^{30}\cdot 11^{16}\cdot 23^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{65581678306780513790051987849} a^{19} - \frac{11358446394954610664566925120}{65581678306780513790051987849} a^{18} - \frac{6707335716591943882145103802}{65581678306780513790051987849} a^{17} - \frac{18912123838756236174168182060}{65581678306780513790051987849} a^{16} - \frac{17323044038588762465261118323}{65581678306780513790051987849} a^{15} + \frac{25146063383542575585515951268}{65581678306780513790051987849} a^{14} - \frac{3559270476201033861020563655}{65581678306780513790051987849} a^{13} - \frac{21849905942403955428074257188}{65581678306780513790051987849} a^{12} + \frac{10938138168255197445385870445}{65581678306780513790051987849} a^{11} + \frac{28153896514873569760437058551}{65581678306780513790051987849} a^{10} - \frac{16635918071042834928040584717}{65581678306780513790051987849} a^{9} + \frac{15290319686979461165945867606}{65581678306780513790051987849} a^{8} - \frac{1519667728942561091015861775}{65581678306780513790051987849} a^{7} + \frac{22042222481302959007649884402}{65581678306780513790051987849} a^{6} - \frac{14467033125932719183160217686}{65581678306780513790051987849} a^{5} - \frac{5387587272159359583360326879}{65581678306780513790051987849} a^{4} - \frac{13141189091356537516757772443}{65581678306780513790051987849} a^{3} + \frac{16100675624537391110725274012}{65581678306780513790051987849} a^{2} - \frac{5799287049875298122533036427}{65581678306780513790051987849} a + \frac{23817124854919259246378515540}{65581678306780513790051987849}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3599142.17628 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T340:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 80 conjugacy class representatives for t20n340 are not computed
Character table for t20n340 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{11})^+\), 10.10.7024111812608.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.15.1$x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$$2$$5$$15$$C_{10}$$[3]^{5}$
2.10.15.1$x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$$2$$5$$15$$C_{10}$$[3]^{5}$
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$