Normalized defining polynomial
\( x^{20} - 2 x^{19} + 3 x^{18} - 4 x^{17} - 5 x^{16} - 12 x^{15} - 71 x^{14} + 90 x^{13} + 43 x^{12} + 86 x^{11} + 132 x^{10} - 10 x^{9} + 1249 x^{8} + 892 x^{7} - 1683 x^{6} - 1306 x^{5} + 639 x^{4} + 642 x^{3} - 20 x^{2} - 112 x - 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26099879633934179709805920256=2^{30}\cdot 11^{16}\cdot 23^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} - \frac{3}{23} a^{17} + \frac{2}{23} a^{16} + \frac{6}{23} a^{15} + \frac{4}{23} a^{14} + \frac{6}{23} a^{13} - \frac{1}{23} a^{12} - \frac{2}{23} a^{11} + \frac{3}{23} a^{10} - \frac{1}{23} a^{9} + \frac{6}{23} a^{8} + \frac{11}{23} a^{7} - \frac{5}{23} a^{6} + \frac{2}{23} a^{5} - \frac{9}{23} a^{4} + \frac{6}{23} a^{3} + \frac{2}{23} a^{2} - \frac{5}{23} a$, $\frac{1}{35084260470153174097493609} a^{19} + \frac{649800934322335445527887}{35084260470153174097493609} a^{18} - \frac{10012184132012117962245199}{35084260470153174097493609} a^{17} - \frac{1394014538531888344735736}{35084260470153174097493609} a^{16} - \frac{12582504019438930159895436}{35084260470153174097493609} a^{15} - \frac{11484053604628289724869618}{35084260470153174097493609} a^{14} - \frac{4448060718593501283975744}{35084260470153174097493609} a^{13} + \frac{11860229532940345137117123}{35084260470153174097493609} a^{12} + \frac{8065855082339580488250204}{35084260470153174097493609} a^{11} - \frac{1804607767420951885218208}{35084260470153174097493609} a^{10} - \frac{13048348107799211487104001}{35084260470153174097493609} a^{9} - \frac{8039954383161360184728636}{35084260470153174097493609} a^{8} + \frac{5764964327791703755349715}{35084260470153174097493609} a^{7} + \frac{43274160199061022027831}{35084260470153174097493609} a^{6} - \frac{15504996594853711393901888}{35084260470153174097493609} a^{5} - \frac{13449680880198665452995641}{35084260470153174097493609} a^{4} - \frac{12744407722609323083878943}{35084260470153174097493609} a^{3} - \frac{14381211908275479357547029}{35084260470153174097493609} a^{2} + \frac{16797128444848403822224213}{35084260470153174097493609} a - \frac{340020227328115720401265}{1525402629137094525977983}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4918338.47388 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 40 conjugacy class representatives for t20n262 |
| Character table for t20n262 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{11})^+\), 10.10.7024111812608.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |