Properties

Label 20.8.25490385156...0000.5
Degree $20$
Signature $[8, 6]$
Discriminant $2^{20}\cdot 5^{15}\cdot 6029^{5}$
Root discriminant $58.93$
Ramified primes $2, 5, 6029$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T797

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![30145, 0, 0, 0, -135150, 0, -94555, 0, 10740, 0, 17270, 0, 824, 0, -850, 0, -76, 0, 10, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 10*x^18 - 76*x^16 - 850*x^14 + 824*x^12 + 17270*x^10 + 10740*x^8 - 94555*x^6 - 135150*x^4 + 30145)
 
gp: K = bnfinit(x^20 + 10*x^18 - 76*x^16 - 850*x^14 + 824*x^12 + 17270*x^10 + 10740*x^8 - 94555*x^6 - 135150*x^4 + 30145, 1)
 

Normalized defining polynomial

\( x^{20} + 10 x^{18} - 76 x^{16} - 850 x^{14} + 824 x^{12} + 17270 x^{10} + 10740 x^{8} - 94555 x^{6} - 135150 x^{4} + 30145 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(254903851560926116768000000000000000=2^{20}\cdot 5^{15}\cdot 6029^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $58.93$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 6029$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{37} a^{14} + \frac{3}{37} a^{12} - \frac{2}{37} a^{10} - \frac{7}{37} a^{8} - \frac{16}{37} a^{6} + \frac{15}{37} a^{4} + \frac{16}{37} a^{2} - \frac{11}{37}$, $\frac{1}{37} a^{15} + \frac{3}{37} a^{13} - \frac{2}{37} a^{11} - \frac{7}{37} a^{9} - \frac{16}{37} a^{7} + \frac{15}{37} a^{5} + \frac{16}{37} a^{3} - \frac{11}{37} a$, $\frac{1}{37} a^{16} - \frac{11}{37} a^{12} - \frac{1}{37} a^{10} + \frac{5}{37} a^{8} - \frac{11}{37} a^{6} + \frac{8}{37} a^{4} + \frac{15}{37} a^{2} - \frac{4}{37}$, $\frac{1}{37} a^{17} - \frac{11}{37} a^{13} - \frac{1}{37} a^{11} + \frac{5}{37} a^{9} - \frac{11}{37} a^{7} + \frac{8}{37} a^{5} + \frac{15}{37} a^{3} - \frac{4}{37} a$, $\frac{1}{2155137470290337659651} a^{18} - \frac{2759732638893713662}{307876781470048237093} a^{16} + \frac{3664182637337189017}{2155137470290337659651} a^{14} + \frac{534849782478413377935}{2155137470290337659651} a^{12} - \frac{190466137233662073418}{2155137470290337659651} a^{10} + \frac{749926260683001634171}{2155137470290337659651} a^{8} - \frac{585297734010205323594}{2155137470290337659651} a^{6} + \frac{650598307078193224225}{2155137470290337659651} a^{4} - \frac{840248358461744269987}{2155137470290337659651} a^{2} - \frac{415359055809961074972}{2155137470290337659651}$, $\frac{1}{2155137470290337659651} a^{19} - \frac{2759732638893713662}{307876781470048237093} a^{17} + \frac{3664182637337189017}{2155137470290337659651} a^{15} + \frac{534849782478413377935}{2155137470290337659651} a^{13} - \frac{190466137233662073418}{2155137470290337659651} a^{11} + \frac{749926260683001634171}{2155137470290337659651} a^{9} - \frac{585297734010205323594}{2155137470290337659651} a^{7} + \frac{650598307078193224225}{2155137470290337659651} a^{5} - \frac{840248358461744269987}{2155137470290337659651} a^{3} - \frac{415359055809961074972}{2155137470290337659651} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10968826539.8 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T797:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 122880
The 108 conjugacy class representatives for t20n797 are not computed
Character table for t20n797 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.12.11.2$x^{12} - 20$$12$$1$$11$$S_3 \times C_4$$[\ ]_{12}^{2}$
6029Data not computed