Normalized defining polynomial
\( x^{20} - 9 x^{18} - 208 x^{16} + 474 x^{14} + 16151 x^{12} + 58920 x^{10} - 39940 x^{8} - 486825 x^{6} - 406925 x^{4} + 753625 x^{2} + 753625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(254903851560926116768000000000000000=2^{20}\cdot 5^{15}\cdot 6029^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} + \frac{2}{5} a^{8} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} + \frac{2}{5} a^{9} - \frac{1}{5} a^{7} + \frac{1}{5} a^{5}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{10} + \frac{2}{5} a^{8} + \frac{2}{5} a^{6} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{11} + \frac{2}{5} a^{9} + \frac{2}{5} a^{7} - \frac{1}{5} a^{5}$, $\frac{1}{25} a^{16} + \frac{1}{25} a^{14} + \frac{2}{25} a^{12} - \frac{6}{25} a^{10} - \frac{9}{25} a^{8} + \frac{1}{5} a^{6} + \frac{2}{5} a^{4}$, $\frac{1}{25} a^{17} + \frac{1}{25} a^{15} + \frac{2}{25} a^{13} - \frac{6}{25} a^{11} - \frac{9}{25} a^{9} + \frac{1}{5} a^{7} + \frac{2}{5} a^{5}$, $\frac{1}{358705401717412473619025} a^{18} - \frac{884060597196061123268}{71741080343482494723805} a^{16} + \frac{20085042895943562963341}{358705401717412473619025} a^{14} - \frac{16432143110775001617458}{358705401717412473619025} a^{12} + \frac{129296122387140071931147}{358705401717412473619025} a^{10} - \frac{153889550994606436322381}{358705401717412473619025} a^{8} - \frac{34176016816336560981788}{71741080343482494723805} a^{6} + \frac{1476326711409697941151}{5518544641806345747985} a^{4} + \frac{69843001557648649419}{243190102859262693979} a^{2} - \frac{2150454579054149293334}{14348216068696498944761}$, $\frac{1}{1793527008587062368095125} a^{19} + \frac{9927913082716193328421}{1793527008587062368095125} a^{17} + \frac{34433258964640061908102}{1793527008587062368095125} a^{15} + \frac{12264289026617996272064}{1793527008587062368095125} a^{13} + \frac{43206825974961078262581}{1793527008587062368095125} a^{11} - \frac{128345779466057480088851}{358705401717412473619025} a^{9} - \frac{19827800747640062037027}{358705401717412473619025} a^{7} + \frac{1840457841987716397666}{5518544641806345747985} a^{5} + \frac{69843001557648649419}{1215950514296313469895} a^{3} - \frac{3299734129550129647619}{14348216068696498944761} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6550559486.36 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n797 are not computed |
| Character table for t20n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 6029 | Data not computed | ||||||