Properties

Label 20.8.25490385156...0000.1
Degree $20$
Signature $[8, 6]$
Discriminant $2^{20}\cdot 5^{15}\cdot 6029^{5}$
Root discriminant $58.93$
Ramified primes $2, 5, 6029$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T797

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![30145, 0, 753625, 0, 861665, 0, -116715, 0, -334365, 0, -26205, 0, 22601, 0, 292, 0, -312, 0, -3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^18 - 312*x^16 + 292*x^14 + 22601*x^12 - 26205*x^10 - 334365*x^8 - 116715*x^6 + 861665*x^4 + 753625*x^2 + 30145)
 
gp: K = bnfinit(x^20 - 3*x^18 - 312*x^16 + 292*x^14 + 22601*x^12 - 26205*x^10 - 334365*x^8 - 116715*x^6 + 861665*x^4 + 753625*x^2 + 30145, 1)
 

Normalized defining polynomial

\( x^{20} - 3 x^{18} - 312 x^{16} + 292 x^{14} + 22601 x^{12} - 26205 x^{10} - 334365 x^{8} - 116715 x^{6} + 861665 x^{4} + 753625 x^{2} + 30145 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(254903851560926116768000000000000000=2^{20}\cdot 5^{15}\cdot 6029^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $58.93$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 6029$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{29} a^{16} - \frac{13}{29} a^{14} - \frac{4}{29} a^{12} - \frac{10}{29} a^{10} + \frac{7}{29} a^{8} - \frac{12}{29} a^{6} + \frac{8}{29} a^{4} - \frac{2}{29} a^{2} + \frac{11}{29}$, $\frac{1}{29} a^{17} - \frac{13}{29} a^{15} - \frac{4}{29} a^{13} - \frac{10}{29} a^{11} + \frac{7}{29} a^{9} - \frac{12}{29} a^{7} + \frac{8}{29} a^{5} - \frac{2}{29} a^{3} + \frac{11}{29} a$, $\frac{1}{241468522727281060755736672223} a^{18} + \frac{257029463552802461332055051}{241468522727281060755736672223} a^{16} + \frac{54760693812932449807264407365}{241468522727281060755736672223} a^{14} + \frac{92059979895216780773200715090}{241468522727281060755736672223} a^{12} - \frac{67975631052453948856445750280}{241468522727281060755736672223} a^{10} + \frac{22918015416114183947464183072}{241468522727281060755736672223} a^{8} - \frac{111616182534988314637172357067}{241468522727281060755736672223} a^{6} - \frac{66714514466591771210423534916}{241468522727281060755736672223} a^{4} + \frac{109516114892631854940710642208}{241468522727281060755736672223} a^{2} - \frac{13308459439039994248313907567}{241468522727281060755736672223}$, $\frac{1}{241468522727281060755736672223} a^{19} + \frac{257029463552802461332055051}{241468522727281060755736672223} a^{17} + \frac{54760693812932449807264407365}{241468522727281060755736672223} a^{15} + \frac{92059979895216780773200715090}{241468522727281060755736672223} a^{13} - \frac{67975631052453948856445750280}{241468522727281060755736672223} a^{11} + \frac{22918015416114183947464183072}{241468522727281060755736672223} a^{9} - \frac{111616182534988314637172357067}{241468522727281060755736672223} a^{7} - \frac{66714514466591771210423534916}{241468522727281060755736672223} a^{5} + \frac{109516114892631854940710642208}{241468522727281060755736672223} a^{3} - \frac{13308459439039994248313907567}{241468522727281060755736672223} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 13803236675.3 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T797:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 122880
The 108 conjugacy class representatives for t20n797 are not computed
Character table for t20n797 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
6029Data not computed