Normalized defining polynomial
\( x^{20} - 5 x^{19} - 14 x^{18} + 84 x^{17} + 122 x^{16} - 903 x^{15} - 619 x^{14} + 8499 x^{13} - 10886 x^{12} - 15478 x^{11} + 66125 x^{10} - 59538 x^{9} - 68173 x^{8} + 154704 x^{7} - 75197 x^{6} - 42523 x^{5} + 88161 x^{4} - 79116 x^{3} + 53776 x^{2} - 18984 x + 1136 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24066961956181828815836990978396029=83^{7}\cdot 983^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{17} - \frac{1}{2} a^{14} + \frac{1}{4} a^{13} + \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{277248350183470110296754005828328467855153901308663224} a^{19} + \frac{13677288879605225515040344599474211671548610972601405}{277248350183470110296754005828328467855153901308663224} a^{18} + \frac{13735223499444365461486160094896688318929277757687685}{69312087545867527574188501457082116963788475327165806} a^{17} + \frac{4182078428483386405963311162788132991959955600152055}{69312087545867527574188501457082116963788475327165806} a^{16} - \frac{53328639169971140359176216416487153902874498646411}{138624175091735055148377002914164233927576950654331612} a^{15} + \frac{61248755382680528214882192841391598868416450649785693}{277248350183470110296754005828328467855153901308663224} a^{14} + \frac{47442473749154475418433543949331840407254391067842351}{277248350183470110296754005828328467855153901308663224} a^{13} + \frac{136127875966403382335420782383527112154611654366016905}{277248350183470110296754005828328467855153901308663224} a^{12} - \frac{474329559354117765245963019301328885801703122040015}{69312087545867527574188501457082116963788475327165806} a^{11} - \frac{1103169327932424397478339622131223299836118444543491}{2272527460520246805711098408428921867665195912366092} a^{10} - \frac{41259183369435137510095414365233210836153653917359303}{277248350183470110296754005828328467855153901308663224} a^{9} - \frac{1116467294609688485568723059237443712452276577968452}{34656043772933763787094250728541058481894237663582903} a^{8} - \frac{75135350741345592724602938329577747738957734089598165}{277248350183470110296754005828328467855153901308663224} a^{7} + \frac{52394026409394967345438263661049910633193386434718339}{138624175091735055148377002914164233927576950654331612} a^{6} + \frac{71214278260584793030146356128968430352169496724448487}{277248350183470110296754005828328467855153901308663224} a^{5} - \frac{93078073593855558100971255140604223510204345813277773}{277248350183470110296754005828328467855153901308663224} a^{4} + \frac{44157731940015836899350721462091427990455584955529343}{277248350183470110296754005828328467855153901308663224} a^{3} + \frac{45610888146154447056542211549624055394391511895978661}{138624175091735055148377002914164233927576950654331612} a^{2} + \frac{9449864413044092572798246187263600885396295665000645}{69312087545867527574188501457082116963788475327165806} a - \frac{5993533659168269678807419882589337446405641987063663}{34656043772933763787094250728541058481894237663582903}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9024006422.07 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n285 |
| Character table for t20n285 is not computed |
Intermediate fields
| 10.10.543118793139469.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $83$ | 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 83.6.3.1 | $x^{6} - 166 x^{4} + 6889 x^{2} - 5146083$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 83.6.3.1 | $x^{6} - 166 x^{4} + 6889 x^{2} - 5146083$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 83.6.0.1 | $x^{6} - x + 34$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 983 | Data not computed | ||||||