Properties

Label 20.8.24066357946...0721.1
Degree $20$
Signature $[8, 6]$
Discriminant $13^{10}\cdot 347^{6}$
Root discriminant $20.85$
Ramified primes $13, 347$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T288

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 6, 4, -65, -157, 206, 468, -678, -176, 1328, -699, -653, 921, -322, -136, 171, -74, 6, 10, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^19 + 10*x^18 + 6*x^17 - 74*x^16 + 171*x^15 - 136*x^14 - 322*x^13 + 921*x^12 - 653*x^11 - 699*x^10 + 1328*x^9 - 176*x^8 - 678*x^7 + 468*x^6 + 206*x^5 - 157*x^4 - 65*x^3 + 4*x^2 + 6*x + 1)
 
gp: K = bnfinit(x^20 - 5*x^19 + 10*x^18 + 6*x^17 - 74*x^16 + 171*x^15 - 136*x^14 - 322*x^13 + 921*x^12 - 653*x^11 - 699*x^10 + 1328*x^9 - 176*x^8 - 678*x^7 + 468*x^6 + 206*x^5 - 157*x^4 - 65*x^3 + 4*x^2 + 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 5 x^{19} + 10 x^{18} + 6 x^{17} - 74 x^{16} + 171 x^{15} - 136 x^{14} - 322 x^{13} + 921 x^{12} - 653 x^{11} - 699 x^{10} + 1328 x^{9} - 176 x^{8} - 678 x^{7} + 468 x^{6} + 206 x^{5} - 157 x^{4} - 65 x^{3} + 4 x^{2} + 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(240663579466141115896800721=13^{10}\cdot 347^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.85$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 347$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13} a^{18} + \frac{6}{13} a^{17} - \frac{3}{13} a^{16} + \frac{6}{13} a^{15} - \frac{5}{13} a^{14} + \frac{6}{13} a^{13} - \frac{3}{13} a^{11} + \frac{4}{13} a^{10} + \frac{5}{13} a^{9} + \frac{2}{13} a^{8} + \frac{6}{13} a^{7} + \frac{5}{13} a^{6} - \frac{5}{13} a^{5} + \frac{5}{13} a^{4} + \frac{6}{13} a^{3} - \frac{5}{13} a^{2} + \frac{4}{13} a + \frac{1}{13}$, $\frac{1}{3199090758224496067398271} a^{19} + \frac{59060907580417351621508}{3199090758224496067398271} a^{18} - \frac{1490140912801650839743885}{3199090758224496067398271} a^{17} + \frac{1071256448812037566467056}{3199090758224496067398271} a^{16} + \frac{614146892806486186508267}{3199090758224496067398271} a^{15} - \frac{77278943872065369904474}{246083904478807389799867} a^{14} - \frac{398517549533025442068560}{3199090758224496067398271} a^{13} + \frac{1090838406078986630777878}{3199090758224496067398271} a^{12} - \frac{1490626350081695839716779}{3199090758224496067398271} a^{11} + \frac{426185035449548783639597}{3199090758224496067398271} a^{10} - \frac{470418830228632287914007}{3199090758224496067398271} a^{9} - \frac{21985676580120799977706}{3199090758224496067398271} a^{8} + \frac{816778260408432421226277}{3199090758224496067398271} a^{7} - \frac{249260159538212407965431}{3199090758224496067398271} a^{6} - \frac{877297682102511669140311}{3199090758224496067398271} a^{5} + \frac{687725332051187834710045}{3199090758224496067398271} a^{4} + \frac{768075686700073120408712}{3199090758224496067398271} a^{3} + \frac{711020008566492313984748}{3199090758224496067398271} a^{2} - \frac{41356513233063721385370}{3199090758224496067398271} a - \frac{190204594787863121767994}{3199090758224496067398271}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 334840.411264 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T288:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 3840
The 36 conjugacy class representatives for t20n288
Character table for t20n288 is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), 5.3.4511.1, 10.4.15513335536439.2, 10.4.7061144987.2, 10.6.44707018837.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 32 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
347Data not computed