Properties

Label 20.8.23737702243...5625.1
Degree $20$
Signature $[8, 6]$
Discriminant $5^{10}\cdot 11^{16}\cdot 23^{2}$
Root discriminant $20.83$
Ramified primes $5, 11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^2\times C_2^4:C_5$ (as 20T86)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -3, -18, -32, -19, 6, 95, 112, -21, -169, 21, 112, -95, 6, 19, -32, 18, -3, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 - 3*x^18 + 18*x^17 - 32*x^16 + 19*x^15 + 6*x^14 - 95*x^13 + 112*x^12 + 21*x^11 - 169*x^10 - 21*x^9 + 112*x^8 + 95*x^7 + 6*x^6 - 19*x^5 - 32*x^4 - 18*x^3 - 3*x^2 + 3*x + 1)
 
gp: K = bnfinit(x^20 - 3*x^19 - 3*x^18 + 18*x^17 - 32*x^16 + 19*x^15 + 6*x^14 - 95*x^13 + 112*x^12 + 21*x^11 - 169*x^10 - 21*x^9 + 112*x^8 + 95*x^7 + 6*x^6 - 19*x^5 - 32*x^4 - 18*x^3 - 3*x^2 + 3*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 3 x^{19} - 3 x^{18} + 18 x^{17} - 32 x^{16} + 19 x^{15} + 6 x^{14} - 95 x^{13} + 112 x^{12} + 21 x^{11} - 169 x^{10} - 21 x^{9} + 112 x^{8} + 95 x^{7} + 6 x^{6} - 19 x^{5} - 32 x^{4} - 18 x^{3} - 3 x^{2} + 3 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(237377022439742902041015625=5^{10}\cdot 11^{16}\cdot 23^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.83$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{71040859} a^{18} + \frac{28128191}{71040859} a^{17} + \frac{24075137}{71040859} a^{16} - \frac{16254249}{71040859} a^{15} - \frac{15994771}{71040859} a^{14} - \frac{4573316}{71040859} a^{13} + \frac{17871374}{71040859} a^{12} + \frac{18568746}{71040859} a^{11} - \frac{17108128}{71040859} a^{10} - \frac{33728043}{71040859} a^{9} + \frac{17108128}{71040859} a^{8} + \frac{18568746}{71040859} a^{7} - \frac{17871374}{71040859} a^{6} - \frac{4573316}{71040859} a^{5} + \frac{15994771}{71040859} a^{4} - \frac{16254249}{71040859} a^{3} - \frac{24075137}{71040859} a^{2} + \frac{28128191}{71040859} a - \frac{1}{71040859}$, $\frac{1}{28203221023} a^{19} - \frac{66}{28203221023} a^{18} - \frac{4542669536}{28203221023} a^{17} + \frac{13856220122}{28203221023} a^{16} + \frac{1474337946}{28203221023} a^{15} - \frac{12009060854}{28203221023} a^{14} - \frac{7116125193}{28203221023} a^{13} - \frac{5535003231}{28203221023} a^{12} + \frac{7586066145}{28203221023} a^{11} - \frac{7783726544}{28203221023} a^{10} - \frac{946998525}{28203221023} a^{9} + \frac{3861320002}{28203221023} a^{8} - \frac{134194851}{655888861} a^{7} - \frac{12424338666}{28203221023} a^{6} - \frac{4276367436}{28203221023} a^{5} + \frac{301925705}{655888861} a^{4} + \frac{2176666170}{28203221023} a^{3} + \frac{150703043}{28203221023} a^{2} - \frac{9610645663}{28203221023} a - \frac{5299936168}{28203221023}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 284529.931338 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_2^4:C_5$ (as 20T86):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 320
The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$
Character table for $C_2^2\times C_2^4:C_5$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{11})^+\), 10.4.4930254263.1, 10.10.669871503125.1, 10.4.15407044571875.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$