Normalized defining polynomial
\( x^{20} - 5 x^{19} + 26 x^{18} - 67 x^{17} + 125 x^{16} - 168 x^{15} + 10 x^{14} - 122 x^{13} - 174 x^{12} + 244 x^{11} - 203 x^{10} - 50 x^{9} + 90 x^{8} + 309 x^{7} + 536 x^{6} + 161 x^{5} - 88 x^{4} - 74 x^{3} - 9 x^{2} + 6 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2357014347930150805034775390625=5^{10}\cdot 19^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{8} + \frac{1}{3} a^{7} - \frac{4}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{3} a^{7} - \frac{4}{9} a^{6} - \frac{1}{3} a^{5} + \frac{4}{9} a^{3} - \frac{1}{9} a^{2} + \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{27} a^{15} - \frac{1}{27} a^{14} + \frac{2}{27} a^{12} + \frac{2}{27} a^{11} + \frac{4}{27} a^{10} + \frac{1}{9} a^{9} - \frac{2}{27} a^{8} + \frac{11}{27} a^{7} + \frac{1}{27} a^{6} + \frac{4}{9} a^{5} - \frac{8}{27} a^{4} - \frac{5}{27} a^{3} + \frac{5}{27} a^{2} + \frac{4}{9} a + \frac{8}{27}$, $\frac{1}{27} a^{16} - \frac{1}{27} a^{14} - \frac{1}{27} a^{13} - \frac{2}{27} a^{12} + \frac{1}{9} a^{11} + \frac{4}{27} a^{10} + \frac{1}{27} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{13}{27} a^{6} - \frac{11}{27} a^{5} - \frac{7}{27} a^{4} + \frac{1}{9} a^{3} + \frac{11}{27} a^{2} + \frac{2}{27} a + \frac{5}{27}$, $\frac{1}{27} a^{17} + \frac{1}{27} a^{14} + \frac{1}{27} a^{13} + \frac{2}{27} a^{12} - \frac{1}{9} a^{11} + \frac{2}{27} a^{10} + \frac{1}{9} a^{9} + \frac{4}{27} a^{8} - \frac{4}{9} a^{7} + \frac{5}{27} a^{6} + \frac{11}{27} a^{5} - \frac{2}{27} a^{4} - \frac{1}{9} a^{3} - \frac{8}{27} a^{2} + \frac{11}{27} a + \frac{5}{27}$, $\frac{1}{243} a^{18} + \frac{1}{243} a^{17} - \frac{2}{243} a^{16} + \frac{4}{243} a^{15} + \frac{1}{243} a^{14} - \frac{10}{243} a^{13} + \frac{5}{81} a^{12} - \frac{7}{243} a^{11} + \frac{10}{81} a^{10} + \frac{23}{243} a^{9} - \frac{23}{243} a^{8} + \frac{56}{243} a^{7} - \frac{7}{243} a^{6} - \frac{116}{243} a^{5} + \frac{38}{81} a^{4} + \frac{1}{243} a^{3} + \frac{119}{243} a^{2} + \frac{1}{81} a + \frac{112}{243}$, $\frac{1}{3079232309743983} a^{19} + \frac{6055469246624}{3079232309743983} a^{18} + \frac{6061593308690}{3079232309743983} a^{17} - \frac{39187827280948}{3079232309743983} a^{16} + \frac{37352959422911}{3079232309743983} a^{15} - \frac{5668540889039}{1026410769914661} a^{14} + \frac{116910992310482}{3079232309743983} a^{13} + \frac{413544208593977}{3079232309743983} a^{12} + \frac{268498001494154}{3079232309743983} a^{11} + \frac{5701295488850}{3079232309743983} a^{10} + \frac{42115132612664}{1026410769914661} a^{9} + \frac{2727945563989}{114045641101629} a^{8} + \frac{1032388262302510}{3079232309743983} a^{7} + \frac{156879057008929}{342136923304887} a^{6} + \frac{1195315639904215}{3079232309743983} a^{5} - \frac{342170657683508}{3079232309743983} a^{4} + \frac{428638925686070}{1026410769914661} a^{3} - \frac{1058111193523741}{3079232309743983} a^{2} - \frac{577193148209819}{3079232309743983} a + \frac{262813303833289}{3079232309743983}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93484344.3404 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n141 |
| Character table for t20n141 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.160801.1, 10.10.80803005003125.1, 10.4.491282270419.1, 10.4.1535257095059375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||