Normalized defining polynomial
\( x^{20} - 10 x^{19} + 50 x^{18} - 165 x^{17} + 384 x^{16} - 624 x^{15} + 615 x^{14} - 15 x^{13} - 1174 x^{12} + 2273 x^{11} - 2252 x^{10} + 705 x^{9} + 1389 x^{8} - 2457 x^{7} + 1816 x^{6} - 348 x^{5} - 584 x^{4} + 611 x^{3} - 227 x^{2} + 12 x + 19 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23533415996900471975491413486328125=3^{8}\cdot 5^{10}\cdot 239^{8}\cdot 34501\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239, 34501$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{11} a^{16} + \frac{3}{11} a^{15} + \frac{5}{11} a^{14} - \frac{5}{11} a^{13} + \frac{2}{11} a^{12} - \frac{3}{11} a^{11} + \frac{1}{11} a^{8} - \frac{4}{11} a^{7} - \frac{1}{11} a^{6} + \frac{5}{11} a^{4} + \frac{1}{11} a^{3} + \frac{4}{11} a^{2} + \frac{2}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{17} - \frac{4}{11} a^{15} + \frac{2}{11} a^{14} - \frac{5}{11} a^{13} + \frac{2}{11} a^{12} - \frac{2}{11} a^{11} + \frac{1}{11} a^{9} + \frac{4}{11} a^{8} + \frac{3}{11} a^{6} + \frac{5}{11} a^{5} - \frac{3}{11} a^{4} + \frac{1}{11} a^{3} + \frac{1}{11} a^{2} + \frac{4}{11} a + \frac{3}{11}$, $\frac{1}{5907} a^{18} - \frac{3}{1969} a^{17} - \frac{45}{1969} a^{16} + \frac{428}{1969} a^{15} - \frac{116}{1969} a^{14} + \frac{960}{1969} a^{13} + \frac{280}{1969} a^{12} + \frac{291}{1969} a^{11} + \frac{1145}{5907} a^{10} - \frac{2018}{5907} a^{9} + \frac{955}{5907} a^{8} + \frac{2408}{5907} a^{7} - \frac{345}{1969} a^{6} + \frac{689}{5907} a^{5} - \frac{67}{179} a^{4} + \frac{224}{5907} a^{3} - \frac{4}{1969} a^{2} + \frac{376}{5907} a - \frac{424}{5907}$, $\frac{1}{112233} a^{19} - \frac{72}{37411} a^{17} + \frac{23}{37411} a^{16} - \frac{8078}{37411} a^{15} + \frac{5823}{37411} a^{14} - \frac{12739}{37411} a^{13} + \frac{977}{1969} a^{12} - \frac{14626}{112233} a^{11} + \frac{31915}{112233} a^{10} + \frac{12328}{112233} a^{9} - \frac{12625}{112233} a^{8} + \frac{2941}{37411} a^{7} + \frac{26816}{112233} a^{6} + \frac{15113}{37411} a^{5} + \frac{45302}{112233} a^{4} - \frac{17053}{37411} a^{3} + \frac{41617}{112233} a^{2} - \frac{50203}{112233} a - \frac{896}{1969}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13962473062.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 239 | Data not computed | ||||||
| 34501 | Data not computed | ||||||