Normalized defining polynomial
\( x^{20} - 4 x^{19} - 13 x^{18} + 70 x^{17} + 20 x^{16} - 453 x^{15} + 576 x^{14} + 577 x^{13} - 2382 x^{12} + 2054 x^{11} + 944 x^{10} - 213 x^{9} - 3806 x^{8} + 2487 x^{7} + 1785 x^{6} - 3094 x^{5} - 1769 x^{4} + 986 x^{3} + 767 x^{2} - 49 x - 71 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23498082529503866065777048066957=97^{4}\cdot 397\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 397, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{101} a^{18} - \frac{23}{101} a^{17} + \frac{22}{101} a^{16} + \frac{10}{101} a^{15} - \frac{25}{101} a^{14} + \frac{42}{101} a^{13} + \frac{31}{101} a^{12} - \frac{29}{101} a^{11} + \frac{49}{101} a^{10} - \frac{46}{101} a^{9} - \frac{3}{101} a^{8} - \frac{46}{101} a^{7} - \frac{9}{101} a^{6} + \frac{41}{101} a^{5} - \frac{22}{101} a^{4} + \frac{32}{101} a^{3} + \frac{3}{101} a^{2} - \frac{17}{101} a - \frac{15}{101}$, $\frac{1}{114372913049418241456893401679539} a^{19} - \frac{60825142289798971354227522723}{114372913049418241456893401679539} a^{18} - \frac{2056398104960593494896011652764}{114372913049418241456893401679539} a^{17} + \frac{55802976666270078065668478553990}{114372913049418241456893401679539} a^{16} - \frac{21526426419753479529680347395352}{114372913049418241456893401679539} a^{15} + \frac{32683112308688567741110980820237}{114372913049418241456893401679539} a^{14} + \frac{12863241672675787642098874930192}{114372913049418241456893401679539} a^{13} - \frac{43352046357385498399887731834341}{114372913049418241456893401679539} a^{12} - \frac{53296794887693391586808908755897}{114372913049418241456893401679539} a^{11} + \frac{8094653657589048460054220532411}{114372913049418241456893401679539} a^{10} - \frac{25149383593259244418877400708878}{114372913049418241456893401679539} a^{9} + \frac{53570804062397054823319914278885}{114372913049418241456893401679539} a^{8} + \frac{37356696437699717568747003270616}{114372913049418241456893401679539} a^{7} + \frac{39457091470415211855432807015561}{114372913049418241456893401679539} a^{6} + \frac{9216046563530451508032884225560}{114372913049418241456893401679539} a^{5} + \frac{29210828589424677275988778878903}{114372913049418241456893401679539} a^{4} + \frac{4886882701143670257749459958259}{114372913049418241456893401679539} a^{3} + \frac{47680406088674046373996457489355}{114372913049418241456893401679539} a^{2} + \frac{46202362550468000868463861131031}{114372913049418241456893401679539} a - \frac{4309128302425965892236494432151}{114372913049418241456893401679539}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 311207732.588 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 280 conjugacy class representatives for t20n849 are not computed |
| Character table for t20n849 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.243288151703809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 397 | Data not computed | ||||||
| 401 | Data not computed | ||||||