Normalized defining polynomial
\( x^{20} - 4 x^{19} + 25 x^{18} + 188 x^{17} + 156 x^{16} - 1704 x^{15} - 20149 x^{14} - 30268 x^{13} + 95467 x^{12} + 345188 x^{11} + 581369 x^{10} - 217930 x^{9} - 2249500 x^{8} - 4825764 x^{7} - 6476292 x^{6} - 2063656 x^{5} + 6393928 x^{4} + 14828288 x^{3} + 9192176 x^{2} - 8052032 x - 7328928 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2261205821157440153800896400780505907200=2^{20}\cdot 5^{2}\cdot 36497^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} - \frac{1}{4} a^{12} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} + \frac{3}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{15} - \frac{1}{4} a^{13} - \frac{1}{8} a^{11} + \frac{1}{8} a^{9} - \frac{1}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{16} - \frac{1}{8} a^{14} - \frac{1}{16} a^{12} - \frac{3}{16} a^{10} - \frac{1}{16} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4738210555316435023026771266480555188223427399625633151497256047081961424} a^{19} + \frac{6393683173522657445457842565450459766002421510333262693223250735542553}{4738210555316435023026771266480555188223427399625633151497256047081961424} a^{18} - \frac{56375165117676443656953046410204103269015949692686378254269674611367507}{1579403518438811674342257088826851729407809133208544383832418682360653808} a^{17} - \frac{282060065937539490088063470834079381491181529453341063216044131546496343}{4738210555316435023026771266480555188223427399625633151497256047081961424} a^{16} + \frac{276377006365358970846289793486754061398582871951766256015954303195505859}{2369105277658217511513385633240277594111713699812816575748628023540980712} a^{15} + \frac{92280619212796095317757514972303103882746099643976628319604399524034029}{1184552638829108755756692816620138797055856849906408287874314011770490356} a^{14} + \frac{191409028807301860971812172990143498999591858248393225948295191099676965}{1579403518438811674342257088826851729407809133208544383832418682360653808} a^{13} + \frac{404596015417739106853670361225863654523511113400563986389720201611349907}{4738210555316435023026771266480555188223427399625633151497256047081961424} a^{12} - \frac{209119486998042347810927490535506724167773116404445758427776464586443683}{4738210555316435023026771266480555188223427399625633151497256047081961424} a^{11} + \frac{168293867827603156418120059582358807687959794648907507979995482608394449}{1579403518438811674342257088826851729407809133208544383832418682360653808} a^{10} + \frac{82674717227418994896711952777765105009851175914551817284208653288894921}{676887222188062146146681609497222169746203914232233307356750863868851632} a^{9} + \frac{66431133293656230159786394416018287492469994599496264093381309200709833}{1579403518438811674342257088826851729407809133208544383832418682360653808} a^{8} + \frac{59305026131061304478375647492795954677067486316769655933858360862381617}{592276319414554377878346408310069398527928424953204143937157005885245178} a^{7} - \frac{216666592238006596162285419719151042220914429535545784659784788276462659}{1184552638829108755756692816620138797055856849906408287874314011770490356} a^{6} + \frac{18554125947904654203058425694742044649121509638246944630616162167303767}{169221805547015536536670402374305542436550978558058326839187715967212908} a^{5} + \frac{19313588202613900149487177052353765612626402976214995170403913175842217}{56407268515671845512223467458101847478850326186019442279729238655737636} a^{4} + \frac{155026951172787313971229245300299196690129944038350440314574979369112667}{592276319414554377878346408310069398527928424953204143937157005885245178} a^{3} + \frac{16342681377373621441103469288974192697886397279054310222312205942263226}{296138159707277188939173204155034699263964212476602071968578502942622589} a^{2} + \frac{78989301055376689301215572215362102243676724575769051953030831507967775}{296138159707277188939173204155034699263964212476602071968578502942622589} a - \frac{39878872288891199835537543469964862973119265148952181695904243117904977}{98712719902425729646391068051678233087988070825534023989526167647540863}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5432419101240 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.36497.1, 10.10.49781898993124352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 36497 | Data not computed | ||||||