Normalized defining polynomial
\( x^{20} - 4 x^{19} - x^{18} + 51 x^{17} - 182 x^{16} + 338 x^{15} - 414 x^{14} + 252 x^{13} + 401 x^{12} - 1448 x^{11} + 2059 x^{10} - 1763 x^{9} + 2525 x^{8} - 3465 x^{7} + 3209 x^{6} - 4624 x^{5} + 3745 x^{4} - 2041 x^{3} + 1307 x^{2} - 46 x - 79 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(217426936208300406768798828125=5^{15}\cdot 97^{2}\cdot 27517559^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 97, 27517559$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{4429172315267198829273453463093758479} a^{19} - \frac{1061095771678470925386244279529215457}{4429172315267198829273453463093758479} a^{18} - \frac{705415844980318950970093695887920077}{4429172315267198829273453463093758479} a^{17} - \frac{2080036638994654889318425822215918777}{4429172315267198829273453463093758479} a^{16} + \frac{466694165665223219870974495067789683}{4429172315267198829273453463093758479} a^{15} + \frac{1204650892665562102863012901589458578}{4429172315267198829273453463093758479} a^{14} + \frac{1868860959037032558827630485706958703}{4429172315267198829273453463093758479} a^{13} - \frac{2086164759383115727690157314257346359}{4429172315267198829273453463093758479} a^{12} - \frac{1873713187705835759026803364119471668}{4429172315267198829273453463093758479} a^{11} + \frac{1082125373772504244544309105810352233}{4429172315267198829273453463093758479} a^{10} - \frac{659455755142535101556879939874438554}{4429172315267198829273453463093758479} a^{9} + \frac{1945548943512386520233079381182990456}{4429172315267198829273453463093758479} a^{8} - \frac{563586091307819776038837612998745821}{4429172315267198829273453463093758479} a^{7} + \frac{1423074710778147086505578695398871185}{4429172315267198829273453463093758479} a^{6} - \frac{232446046521973036058502152285041159}{4429172315267198829273453463093758479} a^{5} + \frac{1363017422571611791229004454621527856}{4429172315267198829273453463093758479} a^{4} - \frac{950357619328074676443350447105110099}{4429172315267198829273453463093758479} a^{3} - \frac{895603879502801792778988675363954463}{4429172315267198829273453463093758479} a^{2} + \frac{1590823512764992650091704284228321453}{4429172315267198829273453463093758479} a - \frac{1698157129330560384475290873261066502}{4429172315267198829273453463093758479}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8839123.1462 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 378 conjugacy class representatives for t20n1039 are not computed |
| Character table for t20n1039 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.8.85992371875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 97 | Data not computed | ||||||
| 27517559 | Data not computed | ||||||