Properties

Label 20.8.21665744968...0000.1
Degree $20$
Signature $[8, 6]$
Discriminant $2^{20}\cdot 5^{10}\cdot 11^{10}\cdot 13^{8}$
Root discriminant $41.38$
Ramified primes $2, 5, 11, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1028

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![14641, 0, 935, 0, -13519, 0, 1702, 0, 372, 0, 239, 0, 1250, 0, -833, 0, 204, 0, -23, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 23*x^18 + 204*x^16 - 833*x^14 + 1250*x^12 + 239*x^10 + 372*x^8 + 1702*x^6 - 13519*x^4 + 935*x^2 + 14641)
 
gp: K = bnfinit(x^20 - 23*x^18 + 204*x^16 - 833*x^14 + 1250*x^12 + 239*x^10 + 372*x^8 + 1702*x^6 - 13519*x^4 + 935*x^2 + 14641, 1)
 

Normalized defining polynomial

\( x^{20} - 23 x^{18} + 204 x^{16} - 833 x^{14} + 1250 x^{12} + 239 x^{10} + 372 x^{8} + 1702 x^{6} - 13519 x^{4} + 935 x^{2} + 14641 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(216657449683526321367040000000000=2^{20}\cdot 5^{10}\cdot 11^{10}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $41.38$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{2}{13} a^{12} - \frac{2}{13} a^{10} - \frac{5}{13} a^{8} - \frac{3}{13} a^{6} + \frac{3}{13} a^{4} - \frac{2}{13} a^{2} + \frac{3}{13}$, $\frac{1}{13} a^{15} + \frac{2}{13} a^{13} - \frac{2}{13} a^{11} - \frac{5}{13} a^{9} - \frac{3}{13} a^{7} + \frac{3}{13} a^{5} - \frac{2}{13} a^{3} + \frac{3}{13} a$, $\frac{1}{91} a^{16} - \frac{3}{91} a^{14} + \frac{1}{91} a^{12} - \frac{34}{91} a^{10} + \frac{5}{13} a^{8} + \frac{5}{91} a^{6} - \frac{4}{91} a^{4} + \frac{3}{7} a^{2} - \frac{15}{91}$, $\frac{1}{91} a^{17} - \frac{3}{91} a^{15} + \frac{1}{91} a^{13} - \frac{34}{91} a^{11} + \frac{5}{13} a^{9} + \frac{5}{91} a^{7} - \frac{4}{91} a^{5} + \frac{3}{7} a^{3} - \frac{15}{91} a$, $\frac{1}{176887949754679163} a^{18} - \frac{76866724870266}{176887949754679163} a^{16} - \frac{6368794416371480}{176887949754679163} a^{14} - \frac{2067523288579537}{176887949754679163} a^{12} + \frac{86860184800650136}{176887949754679163} a^{10} - \frac{47211974687148714}{176887949754679163} a^{8} - \frac{65503665035799311}{176887949754679163} a^{6} - \frac{85362004502524}{25269707107811309} a^{4} + \frac{519139803811215}{16080722704970833} a^{2} - \frac{5648971956953817}{16080722704970833}$, $\frac{1}{1945767447301470793} a^{19} - \frac{844048227986235}{277966778185924399} a^{17} - \frac{29694677900504996}{1945767447301470793} a^{15} + \frac{794900162419315593}{1945767447301470793} a^{13} - \frac{694556911917822650}{1945767447301470793} a^{11} - \frac{754763773705865366}{1945767447301470793} a^{9} + \frac{912239617674130568}{1945767447301470793} a^{7} + \frac{430931310424952378}{1945767447301470793} a^{5} - \frac{77057093904784342}{176887949754679163} a^{3} - \frac{57071942365157250}{176887949754679163} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 387253765.333 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1028:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7372800
The 228 conjugacy class representatives for t20n1028 are not computed
Character table for t20n1028 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.1306755003125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ R R ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$11$11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.3.0.1$x^{3} - x + 3$$1$$3$$0$$C_3$$[\ ]^{3}$
11.3.0.1$x^{3} - x + 3$$1$$3$$0$$C_3$$[\ ]^{3}$
11.4.3.1$x^{4} + 33$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
11.8.6.2$x^{8} - 781 x^{4} + 290521$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
$13$13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.6.4.3$x^{6} + 65 x^{3} + 1352$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
13.6.4.3$x^{6} + 65 x^{3} + 1352$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$