Normalized defining polynomial
\( x^{20} - 3 x^{18} + 3 x^{16} - 14 x^{14} - 31 x^{12} + 27 x^{10} + 237 x^{8} + 238 x^{6} - 117 x^{4} - 143 x^{2} + 13 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2142750660898415478411624448=2^{32}\cdot 13^{9}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{6} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{2} a^{5} - \frac{1}{6} a^{3} - \frac{1}{3} a$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{13} + \frac{1}{12} a^{11} + \frac{1}{12} a^{10} - \frac{1}{6} a^{9} + \frac{1}{12} a^{8} + \frac{1}{12} a^{7} + \frac{5}{12} a^{6} - \frac{1}{2} a^{5} + \frac{5}{12} a^{4} + \frac{1}{12} a^{3} - \frac{1}{12} a + \frac{1}{12}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} + \frac{1}{6} a^{11} + \frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} + \frac{1}{12} a^{6} - \frac{1}{12} a^{5} - \frac{1}{2} a^{4} + \frac{1}{12} a^{3} + \frac{1}{12} a^{2} - \frac{1}{12}$, $\frac{1}{1188} a^{16} + \frac{1}{297} a^{14} - \frac{17}{594} a^{12} + \frac{41}{594} a^{10} - \frac{217}{1188} a^{8} + \frac{17}{66} a^{6} + \frac{223}{594} a^{4} + \frac{17}{198} a^{2} - \frac{475}{1188}$, $\frac{1}{1188} a^{17} + \frac{1}{297} a^{15} - \frac{17}{594} a^{13} + \frac{41}{594} a^{11} - \frac{217}{1188} a^{9} + \frac{17}{66} a^{7} + \frac{223}{594} a^{5} + \frac{17}{198} a^{3} - \frac{475}{1188} a$, $\frac{1}{728244} a^{18} - \frac{103}{364122} a^{16} - \frac{29287}{728244} a^{14} - \frac{1}{12} a^{13} + \frac{4231}{182061} a^{12} + \frac{1}{12} a^{11} + \frac{67561}{364122} a^{10} - \frac{1}{6} a^{9} - \frac{1373}{242748} a^{8} + \frac{1}{12} a^{7} - \frac{179347}{728244} a^{6} - \frac{1}{2} a^{5} - \frac{52999}{242748} a^{4} + \frac{1}{12} a^{3} - \frac{348199}{728244} a^{2} - \frac{1}{12} a - \frac{116933}{242748}$, $\frac{1}{728244} a^{19} - \frac{103}{364122} a^{17} - \frac{29287}{728244} a^{15} - \frac{43763}{728244} a^{13} - \frac{1}{12} a^{12} - \frac{168313}{728244} a^{11} + \frac{1}{12} a^{10} - \frac{41831}{242748} a^{9} - \frac{1}{6} a^{8} + \frac{122731}{364122} a^{7} + \frac{1}{12} a^{6} + \frac{68375}{242748} a^{5} - \frac{1}{2} a^{4} + \frac{38305}{364122} a^{3} + \frac{1}{12} a^{2} + \frac{52793}{121374} a - \frac{1}{12}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1284020.17235 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n991 are not computed |
| Character table for t20n991 is not computed |
Intermediate fields
| 5.3.51376.1, 10.4.50150374144.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.4.1 | $x^{6} + 39 x^{3} + 676$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $19$ | 19.8.6.2 | $x^{8} - 19 x^{4} + 5776$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 19.12.0.1 | $x^{12} - x + 15$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |