Normalized defining polynomial
\( x^{20} - 6 x^{19} + 3 x^{18} + 54 x^{17} - 37 x^{16} - 270 x^{15} - 654 x^{14} + 1818 x^{13} + 6193 x^{12} - 1542 x^{11} - 31791 x^{10} - 24676 x^{9} + 261 x^{8} + 16976 x^{7} + 13398 x^{6} + 12894 x^{5} + 145545 x^{4} + 128112 x^{3} - 54659 x^{2} - 68050 x - 11695 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21070818384983657241640960000000000=2^{32}\cdot 5^{10}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{15} a^{17} + \frac{2}{15} a^{16} + \frac{1}{15} a^{15} + \frac{7}{15} a^{14} - \frac{7}{15} a^{13} - \frac{1}{15} a^{12} - \frac{4}{15} a^{11} - \frac{1}{5} a^{10} - \frac{1}{3} a^{9} - \frac{2}{15} a^{8} - \frac{1}{15} a^{5} + \frac{1}{5} a^{4} + \frac{1}{3} a^{3} - \frac{2}{5} a^{2} - \frac{1}{3}$, $\frac{1}{75} a^{18} + \frac{1}{75} a^{17} + \frac{4}{75} a^{16} + \frac{1}{75} a^{15} - \frac{29}{75} a^{14} + \frac{7}{25} a^{13} - \frac{11}{25} a^{12} + \frac{12}{25} a^{11} - \frac{32}{75} a^{10} - \frac{7}{75} a^{9} + \frac{2}{75} a^{8} + \frac{1}{15} a^{7} - \frac{16}{75} a^{6} - \frac{16}{75} a^{5} + \frac{32}{75} a^{4} - \frac{11}{75} a^{3} + \frac{1}{75} a^{2} + \frac{2}{15} a - \frac{4}{15}$, $\frac{1}{208730501751200541815422991260712254812170591951696625} a^{19} - \frac{219593687906113724506162634284488184487685459789436}{41746100350240108363084598252142450962434118390339325} a^{18} + \frac{1319813780432465227630221986446982290640469889828198}{208730501751200541815422991260712254812170591951696625} a^{17} - \frac{3276450282758309089831750558763079732033225796400466}{69576833917066847271807663753570751604056863983898875} a^{16} + \frac{2292629575443221246390853597564855206697468771925156}{13915366783413369454361532750714150320811372796779775} a^{15} - \frac{4690798366118086961722417364492327067039170091196936}{41746100350240108363084598252142450962434118390339325} a^{14} - \frac{75433713344704547473143161226563134174711327576267459}{208730501751200541815422991260712254812170591951696625} a^{13} + \frac{6485127120534813028489322703898610906365628634032434}{208730501751200541815422991260712254812170591951696625} a^{12} - \frac{65715133665967384152738766540497884111637993232066948}{208730501751200541815422991260712254812170591951696625} a^{11} + \frac{13092077380639529109786494136769788213573494612176307}{41746100350240108363084598252142450962434118390339325} a^{10} + \frac{33526180949444097898433887167691720759288560868420244}{208730501751200541815422991260712254812170591951696625} a^{9} + \frac{51615576180622793595737638250474992036088888627336618}{208730501751200541815422991260712254812170591951696625} a^{8} + \frac{31999970599312855661675216669217140789639316508017979}{208730501751200541815422991260712254812170591951696625} a^{7} - \frac{4573637543469387203068645494713122705887487929220308}{13915366783413369454361532750714150320811372796779775} a^{6} - \frac{18711209567879909510179821544227169261970089103902972}{208730501751200541815422991260712254812170591951696625} a^{5} + \frac{36046350556193142331638949219254647210098673283049147}{208730501751200541815422991260712254812170591951696625} a^{4} - \frac{18105908820134831331657280013448966977390682497778908}{208730501751200541815422991260712254812170591951696625} a^{3} - \frac{42653830096748251939117702236133096059782552340634396}{208730501751200541815422991260712254812170591951696625} a^{2} + \frac{252957786170039569892474603576718276780039112472933}{13915366783413369454361532750714150320811372796779775} a - \frac{1573378104496705790321693520004037486130859542309562}{13915366783413369454361532750714150320811372796779775}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7344599258.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n756 are not computed |
| Character table for t20n756 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3469 | Data not computed | ||||||