Normalized defining polynomial
\( x^{20} - 4 x^{19} + 5 x^{18} - 81 x^{17} + 197 x^{16} + 814 x^{15} - 1548 x^{14} + 3573 x^{13} - 48227 x^{12} + 108760 x^{11} - 15946 x^{10} - 30992 x^{9} - 122359 x^{8} - 83236 x^{7} + 315447 x^{6} - 34374 x^{5} - 148930 x^{4} + 28599 x^{3} - 1163 x^{2} + 11642 x - 953 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2106183370512833937071945009682254848=2^{10}\cdot 19^{12}\cdot 43^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{15} a^{17} + \frac{1}{15} a^{16} - \frac{1}{15} a^{15} - \frac{1}{3} a^{13} + \frac{2}{15} a^{12} + \frac{7}{15} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{8} + \frac{1}{15} a^{7} + \frac{1}{15} a^{5} + \frac{1}{15} a^{4} - \frac{4}{15} a^{3} + \frac{2}{15} a^{2} + \frac{1}{15} a - \frac{1}{15}$, $\frac{1}{645} a^{18} - \frac{13}{645} a^{17} + \frac{1}{129} a^{16} + \frac{19}{645} a^{15} - \frac{11}{215} a^{13} + \frac{13}{215} a^{12} - \frac{227}{645} a^{11} + \frac{12}{215} a^{10} + \frac{233}{645} a^{9} - \frac{196}{645} a^{8} + \frac{271}{645} a^{7} - \frac{214}{645} a^{6} - \frac{76}{215} a^{5} + \frac{14}{215} a^{4} + \frac{223}{645} a^{3} + \frac{51}{215} a^{2} + \frac{37}{129} a - \frac{87}{215}$, $\frac{1}{107661143308133792566574373378556057521625834026678945} a^{19} + \frac{23263782265107754702431228862126877958270861907714}{35887047769377930855524791126185352507208611342226315} a^{18} - \frac{214254824519943880977941319866688561423506971982986}{8281626408317984043582644106042773655509679540513765} a^{17} - \frac{5339676802792467748064190455507557298516991888104044}{107661143308133792566574373378556057521625834026678945} a^{16} - \frac{261987421066711712704486396705411300865542073370882}{5126721109911132979360684446597907501029801620318045} a^{15} - \frac{39788865644975687221629491757115262554556410984236158}{107661143308133792566574373378556057521625834026678945} a^{14} - \frac{5342477846565608075712610206188759908654008496962082}{35887047769377930855524791126185352507208611342226315} a^{13} - \frac{743159035166604129687976785839835405478582235839646}{2503747518793809129455217985547815291200600791318115} a^{12} + \frac{2303522312193017639676828989180022364448585858915}{21532228661626758513314874675711211504325166805335789} a^{11} - \frac{1955383815970875464385171569183889554114831381047835}{7177409553875586171104958225237070501441722268445263} a^{10} - \frac{42774622193050888364613220519420549925498445564821231}{107661143308133792566574373378556057521625834026678945} a^{9} + \frac{37839135520784664713935571883019937809083169345052102}{107661143308133792566574373378556057521625834026678945} a^{8} + \frac{27488478179897217906834787580906973080087304245894348}{107661143308133792566574373378556057521625834026678945} a^{7} - \frac{11032423862762173077532980899770196319611967284220066}{35887047769377930855524791126185352507208611342226315} a^{6} - \frac{47257677550786663210414044727774354981786076028968926}{107661143308133792566574373378556057521625834026678945} a^{5} + \frac{563217687472423152890340960211009247238774837722216}{3076032665946679787616410667958744500617880972190827} a^{4} + \frac{5269654725729458104829994199235491164819108164318}{38519192596827832760849507469966389095393858327971} a^{3} + \frac{155867715963054343735259757861548519978747613744964}{5126721109911132979360684446597907501029801620318045} a^{2} + \frac{36484592604044019910824512650140127350312896457460616}{107661143308133792566574373378556057521625834026678945} a + \frac{18669026250437488441367089474544981861787785027351513}{107661143308133792566574373378556057521625834026678945}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48319668355.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 160 conjugacy class representatives for t20n423 are not computed |
| Character table for t20n423 is not computed |
Intermediate fields
| \(\Q(\sqrt{817}) \), 5.5.667489.1 x5, 10.10.364007458703857.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 2.10.10.10 | $x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $43$ | 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.3.1 | $x^{4} + 387$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |