Normalized defining polynomial
\( x^{20} - 2 x^{19} - 9 x^{18} - 14 x^{17} - 38 x^{16} + 232 x^{15} + 513 x^{14} + 931 x^{13} + 803 x^{12} - 4877 x^{11} - 11819 x^{10} - 29224 x^{9} - 47959 x^{8} - 49550 x^{7} - 68486 x^{6} - 35730 x^{5} - 13642 x^{4} - 21829 x^{3} + 30757 x^{2} - 468 x - 1733 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2041142339188397536405642340137=97^{5}\cdot 461^{2}\cdot 5783^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 461, 5783$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{77} a^{18} - \frac{12}{77} a^{17} + \frac{36}{77} a^{16} - \frac{13}{77} a^{15} + \frac{10}{77} a^{14} + \frac{29}{77} a^{13} + \frac{12}{77} a^{12} + \frac{2}{7} a^{11} - \frac{9}{77} a^{10} + \frac{31}{77} a^{9} + \frac{19}{77} a^{8} - \frac{15}{77} a^{7} - \frac{31}{77} a^{6} + \frac{10}{77} a^{5} + \frac{36}{77} a^{4} - \frac{34}{77} a^{3} + \frac{2}{11} a^{2} - \frac{15}{77} a - \frac{19}{77}$, $\frac{1}{4994434130250015242527219504492902162366937919} a^{19} + \frac{8696454285037306242225868391649515078655073}{4994434130250015242527219504492902162366937919} a^{18} - \frac{1930655853824369343280541630830429171359017450}{4994434130250015242527219504492902162366937919} a^{17} - \frac{11263144635157391320983584852895211293739919}{64862780912337860292561292266141586524245947} a^{16} - \frac{556105809373097983028918241262927556689717628}{4994434130250015242527219504492902162366937919} a^{15} + \frac{1575533999942633493922292452127591224661557007}{4994434130250015242527219504492902162366937919} a^{14} - \frac{95266473799763729223469182817125204974042291}{4994434130250015242527219504492902162366937919} a^{13} - \frac{2373940560019481481074989298959899041572806697}{4994434130250015242527219504492902162366937919} a^{12} + \frac{1379538418873297004398594447926973316958004664}{4994434130250015242527219504492902162366937919} a^{11} + \frac{1152997525728400813058477665210333330884326527}{4994434130250015242527219504492902162366937919} a^{10} + \frac{2179674553619070064496062908620371553765148536}{4994434130250015242527219504492902162366937919} a^{9} - \frac{2274364767112625163658043522160077510397269003}{4994434130250015242527219504492902162366937919} a^{8} - \frac{839417343832412549085770455340682494716043020}{4994434130250015242527219504492902162366937919} a^{7} + \frac{512205670066834718426541903267255586987754831}{4994434130250015242527219504492902162366937919} a^{6} - \frac{1290669737130110977339405139301655878168378316}{4994434130250015242527219504492902162366937919} a^{5} - \frac{54864057294239248089027858432111647257818458}{713490590035716463218174214927557451766705417} a^{4} + \frac{2429163839872676948167406480675253005203274997}{4994434130250015242527219504492902162366937919} a^{3} + \frac{471158734683462398073889807300608592640588141}{4994434130250015242527219504492902162366937919} a^{2} + \frac{1632343084568381909313575034239072290911104661}{4994434130250015242527219504492902162366937919} a - \frac{392451186300769902533863879489681475728619094}{4994434130250015242527219504492902162366937919}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26892454.9523 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 245760 |
| The 201 conjugacy class representatives for t20n886 are not computed |
| Character table for t20n886 is not computed |
Intermediate fields
| 5.3.5783.1, 10.6.15417264029.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 97.8.4.2 | $x^{8} - 912673 x^{2} + 2036173463$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 461 | Data not computed | ||||||
| 5783 | Data not computed | ||||||