Normalized defining polynomial
\( x^{20} + 2 x^{18} - 49 x^{17} - 92 x^{16} - 67 x^{15} + 29 x^{14} + 1402 x^{13} + 347 x^{12} + 1490 x^{11} - 6877 x^{10} - 4260 x^{9} + 28512 x^{8} + 17533 x^{7} + 66422 x^{6} - 81651 x^{5} + 91742 x^{4} - 812 x^{3} - 227354 x^{2} - 44016 x - 711 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(202496984818189934420549080247241853=13^{13}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{15} + \frac{1}{9} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{1}{3} a^{10} - \frac{4}{9} a^{9} + \frac{4}{9} a^{8} + \frac{2}{9} a^{7} - \frac{2}{9} a^{6} - \frac{4}{9} a^{5} - \frac{4}{9} a^{4} - \frac{2}{9} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{1053} a^{18} + \frac{40}{1053} a^{17} + \frac{149}{1053} a^{16} + \frac{10}{117} a^{15} + \frac{68}{1053} a^{14} - \frac{2}{1053} a^{13} + \frac{127}{1053} a^{12} - \frac{89}{1053} a^{11} - \frac{310}{1053} a^{10} + \frac{157}{351} a^{9} + \frac{14}{117} a^{8} - \frac{62}{351} a^{7} - \frac{5}{27} a^{6} - \frac{458}{1053} a^{5} + \frac{31}{351} a^{4} - \frac{382}{1053} a^{3} + \frac{301}{1053} a^{2} + \frac{154}{351} a - \frac{4}{117}$, $\frac{1}{23510021951939461574411614362240179193240197855817} a^{19} + \frac{9297941357342983140831127545861395866505336306}{23510021951939461574411614362240179193240197855817} a^{18} - \frac{87106527367566383061212346521388273096390101404}{7836673983979820524803871454080059731080065951939} a^{17} - \frac{85467982954792724641589377190273530753369960240}{1808463227072266274954739566326167630249245988909} a^{16} + \frac{504372565471394704898864248736825984555337812312}{23510021951939461574411614362240179193240197855817} a^{15} + \frac{966638724526276933700214634833314534210802736112}{7836673983979820524803871454080059731080065951939} a^{14} + \frac{2417673970496869823603487102038556298140372193220}{23510021951939461574411614362240179193240197855817} a^{13} + \frac{2974390960636352333988028006879934190103580277719}{23510021951939461574411614362240179193240197855817} a^{12} - \frac{279505524012976657454645838490028801467016301629}{7836673983979820524803871454080059731080065951939} a^{11} - \frac{1907907095761505222757713152161669053553161174704}{23510021951939461574411614362240179193240197855817} a^{10} - \frac{1751333905182449553220984362416789811186416943908}{7836673983979820524803871454080059731080065951939} a^{9} - \frac{3276157969290023512143721429849895263588661969579}{7836673983979820524803871454080059731080065951939} a^{8} + \frac{3084422424496133185414770148701944982882055455098}{7836673983979820524803871454080059731080065951939} a^{7} - \frac{5636610828270818282133613439151983195992472191280}{23510021951939461574411614362240179193240197855817} a^{6} - \frac{148275856466293188694319563084414312723411435100}{23510021951939461574411614362240179193240197855817} a^{5} + \frac{7951177616519462006170332961611468703845899882597}{23510021951939461574411614362240179193240197855817} a^{4} - \frac{2640709352164596771155748553649543723725979032862}{7836673983979820524803871454080059731080065951939} a^{3} - \frac{5673799532711663986679542200352999966330463738195}{23510021951939461574411614362240179193240197855817} a^{2} - \frac{3563054826350278367809778130567906716316992251559}{7836673983979820524803871454080059731080065951939} a + \frac{1158429201847490912443181211304171424259138661991}{2612224661326606841601290484693353243693355317313}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24068080992.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.160801.1, 10.10.9600508843720093.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20$ | $20$ | $20$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 401 | Data not computed | ||||||