Normalized defining polynomial
\( x^{20} - 2 x^{19} - 2 x^{18} - 18 x^{17} - 86 x^{16} + 442 x^{15} + 234 x^{14} + 270 x^{13} - 4712 x^{12} - 3007 x^{11} + 16087 x^{10} - 14265 x^{9} + 29975 x^{8} - 33568 x^{7} + 98555 x^{6} - 261751 x^{5} + 208699 x^{4} - 81046 x^{3} + 97592 x^{2} - 56310 x + 9099 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(202496984818189934420549080247241853=13^{13}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{16} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{16} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{1939811921331838530915484602680225185348233770577597} a^{19} - \frac{180216740524456809885737380116034038438061746382550}{1939811921331838530915484602680225185348233770577597} a^{18} - \frac{87084810556903654978382498053604362426627730792795}{646603973777279510305161534226741728449411256859199} a^{17} - \frac{652424822607002904416556346278837379324448478309943}{1939811921331838530915484602680225185348233770577597} a^{16} - \frac{948085392677095465131641671895535285176070124099439}{1939811921331838530915484602680225185348233770577597} a^{15} + \frac{709912886896975913212665609478812411678073413669083}{1939811921331838530915484602680225185348233770577597} a^{14} - \frac{15072431924218481894513990469595818121976105469277}{1939811921331838530915484602680225185348233770577597} a^{13} - \frac{150149980524812756246834199876363524629512171733370}{1939811921331838530915484602680225185348233770577597} a^{12} + \frac{724716134901879776517572814677263555610875590934811}{1939811921331838530915484602680225185348233770577597} a^{11} + \frac{296145623822617226979135099249115807070119930779826}{1939811921331838530915484602680225185348233770577597} a^{10} + \frac{148432610051568227292823675939695963316588003035218}{1939811921331838530915484602680225185348233770577597} a^{9} - \frac{352471441460925615003300091359258890832398041989124}{1939811921331838530915484602680225185348233770577597} a^{8} + \frac{201980493194160231770456409349632233461259501524990}{646603973777279510305161534226741728449411256859199} a^{7} - \frac{59586528695246260370137449840820859058492595549403}{646603973777279510305161534226741728449411256859199} a^{6} - \frac{218789030574659359839948351343300029206678906040181}{1939811921331838530915484602680225185348233770577597} a^{5} + \frac{346224143258799936942710552207169218465475901768037}{1939811921331838530915484602680225185348233770577597} a^{4} + \frac{560235364860188270085681710025483116839408127337209}{1939811921331838530915484602680225185348233770577597} a^{3} - \frac{110027981716302161987128711286508611792631564230287}{646603973777279510305161534226741728449411256859199} a^{2} + \frac{114327266907193509946946965997847090252571724459180}{646603973777279510305161534226741728449411256859199} a + \frac{210458907713064313430506914369328367442438787321215}{646603973777279510305161534226741728449411256859199}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19664730473.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.160801.1, 10.10.9600508843720093.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20$ | $20$ | $20$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 401 | Data not computed | ||||||