Normalized defining polynomial
\( x^{20} - x^{19} - 4 x^{18} + 35 x^{17} - 71 x^{16} + 31 x^{15} + 311 x^{14} - 1084 x^{13} + 1545 x^{12} - 1050 x^{11} - 1690 x^{10} + 7139 x^{9} - 13045 x^{8} + 19708 x^{7} - 27658 x^{6} + 31442 x^{5} - 24879 x^{4} + 11997 x^{3} - 2946 x^{2} + 183 x + 41 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19751718904610600919732666015625=5^{14}\cdot 61^{4}\cdot 97^{2}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61, 97, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{263} a^{18} + \frac{58}{263} a^{17} + \frac{58}{263} a^{16} + \frac{41}{263} a^{15} - \frac{16}{263} a^{14} - \frac{72}{263} a^{13} + \frac{116}{263} a^{12} - \frac{66}{263} a^{11} + \frac{24}{263} a^{10} - \frac{109}{263} a^{9} - \frac{130}{263} a^{8} - \frac{124}{263} a^{7} + \frac{110}{263} a^{6} - \frac{54}{263} a^{5} + \frac{105}{263} a^{4} - \frac{2}{263} a^{3} - \frac{129}{263} a^{2} + \frac{60}{263} a + \frac{84}{263}$, $\frac{1}{2703652484272405501809707585979227} a^{19} + \frac{2124504750774730787727798818828}{2703652484272405501809707585979227} a^{18} - \frac{430849089071411369804284895517304}{2703652484272405501809707585979227} a^{17} - \frac{171795309091112657013319620323052}{2703652484272405501809707585979227} a^{16} - \frac{85667111244378551696320558461634}{2703652484272405501809707585979227} a^{15} + \frac{1218075772281430488395049075841725}{2703652484272405501809707585979227} a^{14} + \frac{964955505256079037841618789162938}{2703652484272405501809707585979227} a^{13} + \frac{257536499055766543549368019370052}{2703652484272405501809707585979227} a^{12} - \frac{75539758791271399454823268267}{10280047468716370729314477513229} a^{11} - \frac{46855461281039027785661170442185}{2703652484272405501809707585979227} a^{10} - \frac{564568101179000380052636401771581}{2703652484272405501809707585979227} a^{9} - \frac{759734925257177103468064458033880}{2703652484272405501809707585979227} a^{8} + \frac{1178926090663919476710373419063109}{2703652484272405501809707585979227} a^{7} + \frac{300089296751756977802943874230331}{2703652484272405501809707585979227} a^{6} - \frac{1139913134925163095738282581211575}{2703652484272405501809707585979227} a^{5} + \frac{329118204451721363957758855633562}{2703652484272405501809707585979227} a^{4} - \frac{130652806070453378823082673286253}{2703652484272405501809707585979227} a^{3} - \frac{526994010343919936514755837251045}{2703652484272405501809707585979227} a^{2} + \frac{267374011477490889778092417954187}{2703652484272405501809707585979227} a + \frac{572233318819771305090207665378512}{2703652484272405501809707585979227}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 147520359.82 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n794 are not computed |
| Character table for t20n794 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.24217.1, 10.10.1832697153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.6.0.1 | $x^{6} - x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 97.6.0.1 | $x^{6} - x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 397 | Data not computed | ||||||