Normalized defining polynomial
\( x^{20} - 5 x^{19} + 39 x^{18} - 34 x^{17} - 107 x^{16} + 1115 x^{15} - 2747 x^{14} - 11371 x^{13} + 12282 x^{12} + 49505 x^{11} - 924 x^{10} - 92095 x^{9} - 55089 x^{8} + 72007 x^{7} + 84333 x^{6} - 16878 x^{5} - 39049 x^{4} + 2772 x^{3} - 6090 x^{2} - 12933 x - 711 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(194813520645626483248608015673828125=3^{8}\cdot 5^{11}\cdot 239^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{1611} a^{18} + \frac{214}{1611} a^{17} - \frac{43}{537} a^{16} - \frac{109}{1611} a^{15} + \frac{10}{1611} a^{14} + \frac{587}{1611} a^{13} + \frac{220}{1611} a^{12} + \frac{116}{1611} a^{11} + \frac{202}{537} a^{10} + \frac{689}{1611} a^{9} - \frac{72}{179} a^{8} - \frac{499}{1611} a^{7} + \frac{61}{179} a^{6} - \frac{164}{1611} a^{5} - \frac{157}{537} a^{4} + \frac{41}{179} a^{3} + \frac{566}{1611} a^{2} + \frac{32}{179} a + \frac{197}{537}$, $\frac{1}{2070113138601208678295936907053690503945744317} a^{19} - \frac{262782504019608242738960565504063287098834}{2070113138601208678295936907053690503945744317} a^{18} + \frac{41924994649020378748203049984434943173914389}{2070113138601208678295936907053690503945744317} a^{17} + \frac{153947786623609614214923167928223694132530088}{2070113138601208678295936907053690503945744317} a^{16} - \frac{70879614444779427241655867599843907080877686}{690037712867069559431978969017896834648581439} a^{15} - \frac{98876355880511203823269669553154336045527788}{690037712867069559431978969017896834648581439} a^{14} - \frac{79157285780067713350593708188754733967856764}{230012570955689853143992989672632278216193813} a^{13} - \frac{58502416164858326904534492788215741990281049}{230012570955689853143992989672632278216193813} a^{12} + \frac{850542891571994010274786988159791364177240624}{2070113138601208678295936907053690503945744317} a^{11} - \frac{740941675482080082543158800797193822723633300}{2070113138601208678295936907053690503945744317} a^{10} + \frac{221520296781782946561578780828725287209691872}{2070113138601208678295936907053690503945744317} a^{9} + \frac{21602698269069043293402593679205505651781820}{71383211675903747527446100243230707032611873} a^{8} + \frac{618288676513166086569710941688781878335261100}{2070113138601208678295936907053690503945744317} a^{7} - \frac{247203580845440049715640892271844843837474591}{2070113138601208678295936907053690503945744317} a^{6} - \frac{824526808985431618902428077795419406454293895}{2070113138601208678295936907053690503945744317} a^{5} - \frac{56818850538784157000148801004716509216245506}{230012570955689853143992989672632278216193813} a^{4} + \frac{748250827132988494229793453741192650416045394}{2070113138601208678295936907053690503945744317} a^{3} - \frac{687416137426693556095938237597643164579650521}{2070113138601208678295936907053690503945744317} a^{2} - \frac{100445112632963339064263381538512944882463431}{690037712867069559431978969017896834648581439} a - \frac{100767366496537500799257380228314441191340300}{690037712867069559431978969017896834648581439}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11134796611.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||