Normalized defining polynomial
\( x^{20} - 5 x^{19} - 8 x^{18} + 126 x^{17} - 606 x^{16} + 949 x^{15} + 3029 x^{14} - 16503 x^{13} + 32014 x^{12} - 9523 x^{11} - 88217 x^{10} + 177933 x^{9} - 131112 x^{8} - 7150 x^{7} + 46116 x^{6} + 23307 x^{5} - 20012 x^{4} - 18411 x^{3} + 4401 x^{2} + 5679 x + 1251 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(194813520645626483248608015673828125=3^{8}\cdot 5^{11}\cdot 239^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{411} a^{16} - \frac{4}{411} a^{15} + \frac{43}{411} a^{14} + \frac{21}{137} a^{13} + \frac{10}{411} a^{12} - \frac{61}{137} a^{11} + \frac{83}{411} a^{10} + \frac{20}{137} a^{9} + \frac{25}{411} a^{8} + \frac{154}{411} a^{7} + \frac{89}{411} a^{6} - \frac{37}{137} a^{5} + \frac{82}{411} a^{4} - \frac{62}{137} a^{3} + \frac{124}{411} a^{2} + \frac{57}{137} a - \frac{20}{137}$, $\frac{1}{411} a^{17} + \frac{9}{137} a^{15} - \frac{13}{137} a^{14} - \frac{4}{137} a^{13} - \frac{2}{137} a^{12} + \frac{12}{137} a^{11} - \frac{19}{411} a^{10} - \frac{146}{411} a^{9} - \frac{20}{411} a^{8} - \frac{39}{137} a^{7} - \frac{166}{411} a^{6} - \frac{88}{411} a^{5} + \frac{142}{411} a^{4} - \frac{24}{137} a^{3} - \frac{6}{137} a^{2} - \frac{66}{137} a + \frac{57}{137}$, $\frac{1}{1598379} a^{18} + \frac{482}{532793} a^{17} - \frac{1607}{1598379} a^{16} - \frac{118313}{1598379} a^{15} + \frac{25501}{532793} a^{14} + \frac{50183}{532793} a^{13} + \frac{45012}{532793} a^{12} - \frac{652192}{1598379} a^{11} - \frac{355316}{1598379} a^{10} + \frac{144957}{532793} a^{9} + \frac{81007}{532793} a^{8} + \frac{114001}{1598379} a^{7} - \frac{118470}{532793} a^{6} - \frac{147498}{532793} a^{5} - \frac{519746}{1598379} a^{4} - \frac{195894}{532793} a^{3} - \frac{352553}{1598379} a^{2} + \frac{2050}{532793} a - \frac{21076}{532793}$, $\frac{1}{21262086953517917366657174322066138342447} a^{19} - \frac{2212182278835729848077716847990248}{7087362317839305788885724774022046114149} a^{18} + \frac{21869867435476056148841188182510612265}{21262086953517917366657174322066138342447} a^{17} + \frac{6085971450840413729732842525738475282}{21262086953517917366657174322066138342447} a^{16} + \frac{2456617535146474272536565646077207119434}{21262086953517917366657174322066138342447} a^{15} + \frac{990360323734360325528866817694357716911}{21262086953517917366657174322066138342447} a^{14} - \frac{701109165319449752310103182123794753866}{21262086953517917366657174322066138342447} a^{13} + \frac{2554984968600962234035461567826987930109}{21262086953517917366657174322066138342447} a^{12} - \frac{4131936161678789063284995632205261654560}{21262086953517917366657174322066138342447} a^{11} + \frac{357773543473802708037897465553549125145}{21262086953517917366657174322066138342447} a^{10} + \frac{3095105024580010578718553221231524610649}{7087362317839305788885724774022046114149} a^{9} + \frac{9281666097828839287931640762922452747799}{21262086953517917366657174322066138342447} a^{8} - \frac{1897056127990519158814243397725132732354}{21262086953517917366657174322066138342447} a^{7} + \frac{1654966942964404473528753167424708854033}{7087362317839305788885724774022046114149} a^{6} + \frac{2459366109829312540777547218843337863421}{21262086953517917366657174322066138342447} a^{5} + \frac{7726566397256679621404495014209055860295}{21262086953517917366657174322066138342447} a^{4} - \frac{7543965872793516328460593659502825591001}{21262086953517917366657174322066138342447} a^{3} + \frac{2775843269174193414421221517988877647137}{7087362317839305788885724774022046114149} a^{2} + \frac{775221281974993123483432307973051858758}{7087362317839305788885724774022046114149} a - \frac{2223781615492305266658260797962271903756}{7087362317839305788885724774022046114149}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4395614780.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||