Normalized defining polynomial
\( x^{20} - 8 x^{19} + 24 x^{18} - 56 x^{17} + 208 x^{16} - 586 x^{15} + 990 x^{14} - 1728 x^{13} + 3568 x^{12} - 4900 x^{11} + 5086 x^{10} - 7044 x^{9} + 7604 x^{8} - 4556 x^{7} + 3980 x^{6} - 3356 x^{5} + 536 x^{4} - 80 x^{3} + 184 x^{2} + 88 x + 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1898135124043641651200000000000=2^{28}\cdot 5^{11}\cdot 3469^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{2} a^{16}$, $\frac{1}{62} a^{17} - \frac{3}{62} a^{16} - \frac{11}{62} a^{15} - \frac{1}{62} a^{14} - \frac{3}{31} a^{13} + \frac{1}{62} a^{12} + \frac{11}{62} a^{11} - \frac{9}{62} a^{10} - \frac{13}{31} a^{9} - \frac{11}{31} a^{8} + \frac{12}{31} a^{7} + \frac{14}{31} a^{6} + \frac{13}{31} a^{5} - \frac{2}{31} a^{4} + \frac{2}{31} a^{3} + \frac{14}{31} a^{2} + \frac{12}{31} a - \frac{5}{31}$, $\frac{1}{62} a^{18} + \frac{11}{62} a^{16} - \frac{3}{62} a^{15} - \frac{9}{62} a^{14} + \frac{7}{31} a^{13} + \frac{7}{31} a^{12} - \frac{7}{62} a^{11} + \frac{9}{62} a^{10} + \frac{12}{31} a^{9} + \frac{10}{31} a^{8} - \frac{12}{31} a^{7} - \frac{7}{31} a^{6} + \frac{6}{31} a^{5} - \frac{4}{31} a^{4} - \frac{11}{31} a^{3} - \frac{8}{31} a^{2} - \frac{15}{31}$, $\frac{1}{129323849904108334} a^{19} + \frac{602058972510199}{129323849904108334} a^{18} - \frac{413338187509715}{129323849904108334} a^{17} + \frac{24803475266232867}{129323849904108334} a^{16} - \frac{25406730363989445}{129323849904108334} a^{15} - \frac{7840568632139284}{64661924952054167} a^{14} + \frac{30141523274906537}{129323849904108334} a^{13} + \frac{19910448422012111}{129323849904108334} a^{12} - \frac{13296998712947411}{64661924952054167} a^{11} + \frac{8783273459470124}{64661924952054167} a^{10} + \frac{28209967954749227}{64661924952054167} a^{9} + \frac{25460264494254983}{64661924952054167} a^{8} + \frac{3471165095659444}{64661924952054167} a^{7} + \frac{6724896767642879}{64661924952054167} a^{6} - \frac{9336668004670557}{64661924952054167} a^{5} - \frac{29733940364639079}{64661924952054167} a^{4} + \frac{30534186106509949}{64661924952054167} a^{3} - \frac{4238846153725419}{64661924952054167} a^{2} + \frac{16897378813868178}{64661924952054167} a - \frac{17183042796305233}{64661924952054167}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40977743.8647 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n755 are not computed |
| Character table for t20n755 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3469 | Data not computed | ||||||